TMR : RFID 태그을 이용한 감각형 메일 리더

오재진*, 장세미, 유문택
광주과학기술원 U-VR 연구실
{sejinoh*, jangsii, wwoo}@kijst.ac.kr

TMR : Tangible Mail Reader using RFID tags
Sejin Oh*, Seie Jang Woontack Woo
KJIST U-VR Lab.

요 약
본 논문에서는 감각형 인터페이스를 이용하여 메일 전송과 메일 전송을 제어하거나 제어할 수 있는 메일 리더 (TMR : Tangible Mail Reader)를 제안한다. TMR은 마우스나 키보드는 입력 장치로 사용하는 기존의 인터페이스를 사용하는 대신 RFID 태그를 이용한 새로운 형태의 오브젝트를 이용하여 컴퓨터 사용자가 인식하지 못하던 만드미 및 고정표 등이 손쉽게 마일 전송을 제어시키거나 제어할 수 있는 인터페이스를 제공한다. 또한 ubi-UCAM을 사용하여 편안한 사용자의 의도를 다른 액세스의 서비스를 제공하는 통신 서비스를 구현하고 있다. 따라서 제안된 TMR는 유용한 장점으로, 편의성과 효율로 사용자의 의도를 제어할 수 있는 다양한 분야에서 활용할 수 있다.

1. 서 론

2. 감각형 메일 리더
그림 1에 보는 바와 같이, 제안된 시스템은 크게 RFID 태그를 제어하고 있는 감각형 오브젝트와 ubi-UCAM을 이용한 메일 리더로 구성한다.

그림 1. TMR 구성도

2.1 감각형 오브젝트
감각형 오브젝트는 메일 전송에 대한 정보 및 메일 전송에 대한 정보를 제공하고 있는 RFID 태그를 실제 오브젝트에 내장시킨 형태를 취한다. 내장된 RFID 태그는 사용자가 독특한 형태로 입력을 제공하고 있으므로 RFID 태그 내에 정보를 제공할 수 있는 특징을 가진다. 이러한 감각형 오브젝트는 제어 오브젝트와 메일 전송에 연결
2003년도 한국정보과학회 가을 학술발표논문집 Vol. 30, No. 2

2. 2. 메일 리더

메일 리더는 환경 내의 초별 컨텍스트를 생성하는 유비 센서와 유비 센서로부터 전달된 초별 컨텍스트를 효율적으로 통합 및 관리하고 이를 이용하여 사용자의 의도 파악 및 그에 따른 개인화된 서비스를 제공하는 유비 서비스로 구성된다.

유비 센서는 환경 변화 정보를 감지하여 SW1(Who, What, Where, When, How, Why) 형태의 초별 컨텍스트를 생성하며, RF 모듈과 유비 키로 구성된다. RF 모듈은 갑작상 오브젝트의 RF 정보를 읽어들여 오브젝트에 대한 초별 컨텍스트를 생성하여 유비 키는 USB 메모리 스토리에 저장된 사용자에 대한 정보를 이용하여 사용자에 대한 초별 컨텍스트를 생성한다. 표 1은 RF 모듈과 유비 키로부터 생성된 초별 컨텍스트의 세부사항을 보여준다.

<table>
<thead>
<tr>
<th>RF 모듈</th>
<th>유비 센서</th>
<th>컨텍스트(SW1)</th>
<th>컨텍스트 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who</td>
<td>RF 모듈</td>
<td>5W1H</td>
<td>미디어 송신자</td>
</tr>
<tr>
<td>What</td>
<td></td>
<td></td>
<td>진짜 측정터리 및 파일 정보</td>
</tr>
<tr>
<td>Where</td>
<td></td>
<td></td>
<td>진짜 컨텍스트 정보</td>
</tr>
<tr>
<td>When</td>
<td></td>
<td></td>
<td>미디어로 제공된 정보</td>
</tr>
<tr>
<td>How</td>
<td></td>
<td></td>
<td>사용자 이름</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>입질 / 활동 시간</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>사용자 명령/작업 여부</td>
</tr>
</tbody>
</table>

유비 서비스는 컨텍스트 통합기, 해석기, 컨텍스트 관리기, 그리고 서비스 제공기로 구성된다. 컨텍스트 통합기는 RF 모듈과 유비 키에서 생성된 초별 컨텍스트를 통합하고 이를 이용하여 5W1H가 보다 완전하게 갖춰진 통합 컨텍스트를 결정하며 컨텍스트 관리기는 해석기를 통해 사용자가 필요한 컨텍스트 조건을 이용하여 최종 컨텍스트를 생성한다. 그리고 서비스 제공기는 컨텍스트 관리기에 생성된 최종 컨텍스트를 이용하여 실질적으로 서비스를 제공하는 기능을 수행하는데 제안된 TMR에서는 메일 리더 서비스가 이에 해당한다.

메일 리더 서비스는 사용자의 메일 컨텍스트에 대한 접속 관련 여부를 확인하고 해당 접속에 따라 메일 컨텍스트를 재생하거나 제어할 수 있는 서비스를 제공하는데, 메일 프로세서 모듈과 메일 리더 모듈로 구성된다. 메일 프로세서 모듈은 사용자의 메일 컨텍스트에 대한 컨텍스트를 이용하여 메일 컨텍스트 서비스로부터 수신자 정보를 알아낸다. 그리고 해당 사용자의 메일 컨텍스트에 대한 접속 관련 여부를 확인하여 메일 컨텍스트에 대한 URL 정보 또는 제어 정보를 해석한다. 그리고 메일 리더 모듈은 메일 프로세서 모듈에서 해석된 정보를 이용하여 실질적으로 메일 컨텍스트를 제어하거나 재생한다. 그림 3은 유비 서비스의 각 구성요소 간의 상호작용을 보여준다.

3. 구현

제안된 TMR는 그림 4에서 보는 바와 같이 스마트 홈 환경을 위한 테스트 벤더인 ubihome에서 사용자에 자연스럽게 사용가능한 형태로 구현하였으며 RF 모듈은 기존과 같이 대형 RF 모듈을 사용하였다. 그림 5는 설치된 RF 모듈의 크기와 설치 시 간격에 오브젝트를 인식할 수 있는 환경 영역을 보여준다.

[그림 4: TMR의 구현]

[그림 5: RF모듈의 환경 영역]

감지형 오브젝트는 그림 6(a)와 같이, 엠시, 편지 등의 내용에 RF 레이저, Texas Instrument의 transponder RI-101-110A를 내장한 이물 컬럼 또는 트랜스포더를 제어하여 오브젝트로 구현되었다. 그리고 메일 리더 서비스 센서인 RF 모듈도 그림 6(b)와 같이 Texas Instrument의 RFID 시스템(S9900 Reader/Transponder Set RI-K01-3204)을 사용하였으며 유비키는 그림 6(c)와 같이 USB Flash Drive 16MB를 사용하였다.
2.1.1을 이용하여 구현하여 wav, avi, mpeg, qt 등 다양한 형식의 디지털 미디어에 대해 지원 가능하게 하여 대형 TV를 통해 해당 파일을 재생할 수 있게 하였다. 그리고 모델 콘텐츠를 위한 서버는 Compaq ML 370 Server를 사용하였으며 대형 콘텐츠의 수신자와 URL 정보를 통합적으로 관리하는 데이터 베이스는 MS-SQL Server 2000을 사용하였다.

4. 실험

제안된 시스템의 유용성을 평가하기 위하여 컴퓨터 사용이 미숙한 50대가 구성된 실험 집단(A)과 컴퓨터 사용이 익숙한 20대가 구성된 실험 집단(B) 각각 10명을 대상으로 실험을 수행하였다.

우선 기존의 우편, e-mail 그리고 제안된 TMR의 성장적 비교를 수행하기 위해 실험 대상자들에게 각각의 사용 방법을 습득하게끔 결합 학습 시기를 설정하였으며, 각 시스템에 대한 만족도를 측정하는 주요, 제어 방법, 개인화된 서비스로 나누어 조사하였다. 이를 통해 적절한 성향적 비교를 수행한 결과를 나타내었다.

표 2. 우편, e-mail, TMR의 성장적 비교

<table>
<thead>
<tr>
<th></th>
<th>우편</th>
<th>e-mail</th>
<th>TMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(A)</td>
</tr>
<tr>
<td>학습시간</td>
<td>10초</td>
<td>10초</td>
<td>10초</td>
</tr>
<tr>
<td>만 전달범위</td>
<td>20%</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>제어방법</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>콘텐츠</td>
<td>10%</td>
<td>60%</td>
<td>85%</td>
</tr>
<tr>
<td>서비스</td>
<td>20%</td>
<td>60%</td>
<td>85%</td>
</tr>
</tbody>
</table>

상황 대상자 대부분 우편의 제한된 형태의 콘텐츠의 누락이나 우편의 접근성 있다는 점에 대해 불만감을 나타내었다. 그리고 e-mail의 경우 실험 집단(A)이 대부분 컴퓨터 사용이 미숙하여 사용 방법을 습득하는데 무려 10분 이상의 시간이 소요되었으며 전달범위를 제한하여 대상의 불편함을 나타내었다. 또한 실험 집단(B)은 사용자의 정보를 기록하고 입력해야 하는 점에 대해서 불편함을 나타내었다. 반면, TMR의 경우 실험 대상자 대부분의 경우 콘텐츠의 유형을 이용하여 적관적으로 말린 콘텐츠를 제공하고 제어하는 방식에 쉽게 습득하였으며, 높은 만족감을 나타내었다. 그리고 제공되는 다양한 콘텐츠의 종류와 사용자의 접근 과정에 따른 개인화된 서비스에 대해 만족감을 나타내었다.

또한, TMR의 성장적인 비교는 비용이 필요한 비용이 주로 비용을 사용하여 사용자 정보를 입력하는 데 걸리는 시간 및 이용의 비용을 예를 들어서 사용자 정보를 입력하는 시간(인증 시각), 제한된 콘텐츠가 모니터/TV에 재생될 때까지 걸린 시간(재생 시간), 그리고 e-mail 콘텐츠를 제공하기 위해 코드/마우스 또는 재고보드를 조작하는 데 걸리는 시간을 측정하였다.

표 3. e-mail과 TMR의 정량적 비교

<table>
<thead>
<tr>
<th></th>
<th>e-mail</th>
<th>TMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
</tr>
<tr>
<td>인증시간</td>
<td>10분</td>
<td>2초</td>
</tr>
<tr>
<td>재생시간</td>
<td>5분</td>
<td>1초</td>
</tr>
<tr>
<td>제어시간</td>
<td>8시간</td>
<td>1초</td>
</tr>
</tbody>
</table>

5. 결론

제안된 TMR은 엽수, 문자, 전자 우편을 이용한 간결한 오브젝트를 이용하여 컴퓨터 사용이 미숙한 사용자에 대한 고용지 및 고용자가 손쉽게 디지털 정보를 접근하고 제어할 수 있도록 해준다. 그리고 오픈 시스템은 모바일의 사용을 위한 앞선미디어 교육폭발이론이나 오락 등의 다양한 분야에 적용될 수 있다. 앞으로의 연구 과제는 간결한 오브젝트를 이용한 다양한 형태의 콘텐츠의 개발과 좀 더 자연스럽게 흐름의 콘텐츠의 제어에 대한 연구, 그리고 콘텐츠 내에서의 콘텐츠의 높은 효율성으로 이용하는 방안에 대한 연구가 필요하다.

6. 참고 문헌


420