자기 조작화 지도 모형을 이용한 인증별 얼굴 영상 균질화 기법

권혜련, 고병협, 이일영
연세대학교 컴퓨터정보공학부 및 BERC
comtrue@csai.yonsei.ac.kr, soccer1@apiri.yonsei.ac.kr, (hbyun, yblee)@cs.yonsei.ac.kr

Face Data Clustering Method for Face Recognition Using Self Organizing Feature Map

HyeRyeon Kweon, ByoungChul Ko, Hyeran Byun, Yilbyung Lee
Dept. of computer science and BERC, Yonsei University

요 약

본 논문에서는 생체인식 분야 중 얼굴인식의 격차 정확성 향상 및 검색 시간을 단축하기 위한 단계로 인증별 얼굴영상 데이터베이스에 대한 균질화 기법을 연구하였다. 우선, 일반적으로 얼굴이 움직이지 않거나 조명, 시간, 밝기 등에서 복잡한 환경에서 이미지를 촬영한 경우에도 영상의 특성을 추출할 수 있는 방법을 제안하였다. 균질화도와 분석을 위해 자기 조작화 지도 모형을 이용하였는데, 이는 2차원 분석 및 기사화에 유용하며, 학습 후 코더복사를 사용하여 유사한 영상의 균질화를 검색할 수 있는 특성을 가지고 있다. 특성추출에 관한 실험 결과인 인증별 구분시를 위한 특징의 검색범위는 웨이브릿 주파수 성분(lowpass 성분)과 CbCr 특징벡터가 인증별 균질화에 가장 유용한 특징으로 선정되었으며, 추출된 특징을 바탕으로 semantic map을 구성하여 학습방법의 효율성을 제시하였다.

1. 서 론

지난 다년간 필업장비 및 자장고 전송기술의 발전에 따라 영상 데이터의 생산이 급증하고, 다양한 영상 데이터베이스에 대한 영상 분석 및 검색 분야는 그 중요성이 더욱 커져 있다. 또한 기기, 조건, 환경 인식을 바탕한 생체인식 및 인증분야의 발전은 생체 영상경마에 대한 정확화 및 검색 분야의 중요성을 증가시키고 있다.

얼굴 인식을 포함한 영상경마에 있어 고정적인 방법은 로스 도로 기반으로 하였지만 근래의 영상 자료에 포함된 특징 정보를 이용하는 내장기반 검색(content-based image retrieval) 방법이 더 많은 연구가 진행되고 있다 [1,2,3]. 영상의 특성을 추출하는 필업적인 정보는 색상정보(color), 질감정보(texture), 모양정보(shape) 등이 주로 사용되며, 대부분의 검색 시스템은 세부레이어 벡터에서 생성된 영상의 특성을 주로 사용하다가 주로 사용되어 있는 데이터의 순서대로 영상의 정적이고 비교적 단순한 특성으로서 속도의 효율성이 떨어지고 있다. 이러한 단점을 극복하고자 영상 자체에 있는 기존의 특징정보를 늘리는 균질화의 효과를 극대화하기 위해 사용하고 있으며 이를 통해서 복잡한 특성정보를 추출하고 속도의 효율성을 높이기 위하여 검색특성에 대한 균질화 분석에 있어서 다수 도록 한다.

2. 관련연구

2.1 자기 조작화 지도 모형

(SOFM: Self Organizing Feature Map)

자기 조작화 지도 모형은 얼굴 영상에서의 입여분단원체중이고 두 번째 측은 형성용으로 구성된 2-layer 결과의 신경망으로 균질화에 주로 사용되어, 학습법은 다음과 같다.

<SOFM의 학습법>
1. 학습의 시작(Babadi와의 가중치)의 초기화
2. 입력의 유형화를 사용하여 input preparation
3. 가중치 조정
 1. 학습의 세부로 이진값의 연결강도 값
 2. 패턴 매트릭스의 형성
 3. 학습의 자원을 연결강도 값의 평균

본 연구는 KOSEF 생체인식연구센터(BERC) 및 과학기술원 정보통신연구소로부터 부정적인 지원을 받아 수행하였음

본 논문은 KOSEF 생체인식연구센터(BERC) 및 과학기술원 정보통신연구소로부터 부분적인 지원을 받아 수행되었습니다.
3. 음조별 영상 분류 방법

영상데이터는 고차원의 데이터로, 서로 다른 측정을 위해 특성별로 일부 비트를 비교하는 방법으로 개선자는 증가적으로 실험식에서의 사용이 불가능하다. 따라서 본 논문에서는 일반적이며 음영과 이미지 경계에 없는 사용하기 나타난 다양한 특성을 추출하고 측정한 대조의 특징 데이터로부터 도입을 적용한 음조별 분류에 출력 분포를 제안하고자 한다.

3.1. 특성 추출

특성 추출은 색상 성분과 웨이블릿, PCA를 이용하여 각 7 가지(총 13자리)의 특성을 추출하였다.

1. r, g, s 성분

영상은 표현의 결과를 비교하여, 영상 및 끝의 다양한 표현이 주어지는 결과 즉, r, g, s로 나타낼 수 있다.

\[
\begin{align*}
 r &= \frac{R}{R+G+B} \\
 g &= \frac{G}{R+G+B} \\
 b &= \frac{B}{R+G+B}
\end{align*}
\]

2. Cb, Cr 성분

MPEG이나 JPEG표준으로 사용되는 색상 성분으로, RGB분포의 차이를 계산하여 변화율을 이용할 수 있다.

\[
\begin{align*}
 C_b &= -0.1687 - 0.3312 - 0.500 G \\
 C_r &= -0.500 - 0.4186 - 0.0813 B
\end{align*}
\]

3. 전체 r, g, Cb, Cr 성분 (히스토그램 평활화)

히스토그램은 r, g, Cb, Cr 성분에 대해 contrast-stretching을 수행하여 성분을 정상화하는 방법을 추출하였다.

5. 성분 분류에 따라 색상 성분을 변화시킨 r, g, Cb, Cr 성분

기존의 다른 성분에 따른 결과와 비교하여 성분은 서로 유사한 값일 경우 모니터를 제외한다.

6. Daubchees 웨이블릿 필터(tap-4)를 사용하여 영상을 1/4 크기로 줄이거나 2단계로 분해하여 각 부분 영역마다 10x10크기의 영상을 알맞게 한 후, 각 부분 영역 특성을 추출하여 특징벡터로 사용한다.

7. PCA(Principal Component Analysis) 성분 추출

PCA방법은 일반적인 분류에서 가장 빠르게 처리하는 방법으로, 알고리즘의 존재는 많은 분석된 영상간을 알기 위해서 특징벡터로 사용한다.

3.2. 음조별 영상 분류에 대한 최적특성의 선택

3.2.1. 각 특성별 결정계수의 계산

가중 식에 따른 결과는 (1)를 각 특성벡터의 변수에 계산하여 음조별 결정계수의 기여도를 추출한다.

\[
R^2 = \frac{\text{ 설명된 변동}}{\text{ 총 변동}} = 1 - \frac{\text{ SSE}}{\text{ SST}} = \sum_{i=1}^{n} \left(y_i - \bar{y} \right)^2 \]

변량 정도가 높은 변수 순으로 입력변수를 추출한 결과에 공분산 분석을 수행하여 해당 특징벡터의 설명력을 계산, 각 특징벡터의 중요도를 계산한다.

3.2.2. 중요도 기반의 벡터 합성

3.2.1.2에서의 결과를 바탕으로 음조별 결정계수를 계산하여 벡터 합성을 존재하고, 각 차원의 중요도의 합을 나타낸다.

각 격자 특징벡터의 기여도

\[
= 1 + \text{(설정 특징벡터의 기여도/전체 특징벡터의 기여도)}
\]

4. 실험 및 결과

4.1 실험 데이터

본 연구에서는 백인, 평균, 적인 인종의 얼굴을 하기 위해 영국 Surrey 대학의 XM2V(T) 데이터베이스와 연세대학교의 YUFD 데이터베이스를 사용하였다.

각 데이터베이스의 백인과 화인, 적인의 얼굴을 추출하여 100장씩 총 300장의 영상 데이터베이스를 만들고, 경향 제한을 위해 입력으로부터 데이터가 포함된 40x40 크기의 영상으로 자르는 작업을 거쳤다.

[그림 1] 테스트 영상과 웨이블릿 변환된 영상

[그림 2] 실험에 사용된 데이터의 예, 최측부터 백인, 평균, 적인

4.2 실험 결과

주어진 데이터로부터 음조별 분류에 사용을 위한 13개의 항목을 추출하고, 이들 항목의 합계를 이용하여 바이어스를 추출한 결과와 그림과 같이 각 인종의 근본에 가까운 특성은 웨이블릿 주파수 성분(tap=4)이 그에 따라 도출된 94%였으며, Cb, Cr 특징벡터가 63%, r, g 특징벡터 87%의 순으로 나타났다.

또한, 상위 특징벡터의 순으로 유의수준 5% 주요 변수 선택 결과는 각각의 변수 선택결과는 표 1과 같다.
5. 결론 및 향후 연구계획
본 논문에서는 생체면에서 분리한 암 알콜인식의 감식 정확성 향상 및 감식 시간을 단축시키기 위한 전단계로 인용별 업골영상 미터비에 대한 공정화 기법을 연구하였다. 암알콜인식의 다양한 특징을 특별히 주된 특징과 백터를 중요도 순으로 추출한 결과, 웨이블릿 주파수 성분(lownpass)과 CbCr 성분이 인증별 공정화의 주요 특징으로 선택되었으며, 선택된 특징을 통해서 시각 주변성 특징을 활용한 후 자동 조작할 지도의 원목으로 사용하였다. 실험결과 근접간의 공정화가 불가능하고, 유사 화상의 감식 시 구현된 자동 조작할 구도를 사용한 코도부하에서부터 점차 주위의 유사화상으로부터의 감식이 가능하도록 효율성을 갖추고 있었다.
향후 연구계획으로 더욱 다양한 인증간의 공정화에 대한 연구를 확장 진행할 계획이다.

6. 참고문헌