 şeklinde 분 연구는 비선형 영상 저장 혹은 네거영상 템플릿 구축에 대하여 실험적 지식을 기반으로 구축하였다.
3. SPECT 텀플릿을 이용한 뇌기능 이상부위의 추출

이전 단계에서 구조된 SPECT 텀플릿을 이용한 뇌혈류 이상부위 추출과정은 다음과 같게 수행된다. 먼저 SPECT 텀플릿에 환자의 병리학적 SPECT 영상과, SPECT 텀플릿과 환자의 병리학적 SPECT 영상인지 비선형성장성을 수행함으로써 텀플릿의 이상부위를 판단하는 과정이 이루어진다. 이런 방법은 SPECT 영상의 이상부위를 판단하고, 이 방법은 실시간적이고, 이러한 비선형성장성은 텀플릿의 3D와 동일한 방법에 의해 수행된다.

그림 2. 제안 텀플릿을 이용한 영상기반의 추출단계

영상기반의 추출단계는 다음과 같다. 우선, 영상기반의 추출단계는 다음과 같게 수행된다. 먼저 SPECT 영상의 이상부위를 판단하려면, SPECT 영상의 이상부위를 판단하는 방법은 다음과 같다. 먼저, SPECT 영상의 이상부위를 판단하면, SPECT 텀플릿과 영상상에서도 해당 부위를 판단하는 방법이 있다. 그 방법은 SPECT 영상의 이상부위를 판단하고, 이를 수행하기 위해서는, SPECT 영상의 이상부위를 판단하는 방법은 다음과 같다.

\[I_i(j) = I_i(j) + I_i(j) + \ldots + I_i(j), \quad (i,j) \in P \quad (4) \]

4. 구현 및 실험결과

본 논문에서는 구현은 Pentium-IV (1.6GHz, 512MB, Windows XP) 컴퓨터에 C++ 언어와 그래픽 라이브러리로 OpenGl을 이용하였다. 실험데이터는 SPECT 텀플릿 구축을 위하여 정상인 10인의 SPECT 영상을 사용하였고, 기능이상부위 추출을 위하여 해상도 128X128X29,
세금과 3.559X3.559X3.559를 가지고 있는 간질환자 1인의
발작중(ictal) 발작간(interictal) 연 SPECT 영상을 사용
하였다. 또한 심혈관과의 3차원 플로트렌더링은 HP사의
웨어웨어인 Ultraviz를 사용하여 수행하였다.

그림 3은 본 논문에서 소개한 비선형 영상정합과 영
상정렬화를 통하여 구축한 SPECT 템플릿의 2차원 단면
을이며, 그림 4는 이의 3차원 렌더링 결과를 보여주고
있다. 그림 5와 6은 각각 SPECT 템플릿과 간질환자의
변화시점간 SPECT 영상에 의한 기능이상부위의 2차원,
3차원 추출결과이다.

5. 결론 및 향후연구

본 논문에서는 뇌혈류활성을 나타내는 SPECT 영상을
이용하여 정상인과 간에 대하여 비선형 영상정합을 기반
으로 SPECT 템플릿을 구축하였다. 이와 유사한 방법을
다양한 뇌혈류활성에 적용함으로써 뇌 기능에 대한 평판
분석도를 구축할 수 있을 것이다. 또한 본 연구에서는
SPECT 템플릿과 변화시점간 영상정보를 이용하여 뇌
혈류활성의 기능이상부위를 추출하였다. 이들 이용함으로
써 혈류활성과 관련된 간질, 뇌출혈, 차단, 파킨슨병
등 뇌혈류질환 등의 뇌혈류 활동 및 차단을 보조할 수
있다.

본 연구와 관련된 향후 연구로는 추출된 기능이상부위
를 MRI 등 동일 환자의 행동적 영상과 선행 정합함으로
써 보다 정확한 해부학적 위치 판별이 가능하도록 하는
것과 free-form deformation기법을 이용하여 대상목표의
임의 조절이 가능하도록 비선형 영상정합 기법을 개발하
는 것 등이 향후 연구로 필요할 수 있다.

참고문헌

Hawkes, "Medical Image Registration," CRC
Medical Image Registration," Medical Image
nonlinear registration," Pattern Recognition, vol.
ictal SPECT co-registered to MRI improves
clinical usefulness of SPECT in localizing the
surgical seizure focus," Neurology vol. 50, pp.
[7] Péria, O., Franc-ois-Joubert, A., Lavallée, S.,
Champleboux, G., Cinquin, P., and Grand, S.
(1994). Accurate registration of SPECT and MR
brain images of patients suffering from epilepsy
or tumor. In Medical robotics and computer assisted
[8] Wieslaw L. Nowinski, A. Thiranavukkasu,
David N. Kennedy, "Brain Atlas for Functional
Imaging- Clinical and Research Applications",
Thieme, 2002.