자는 대 OVPN에서 QoS Recovery 메커니즘 제공을 통한 QoS 보장 프레임워크

윤이라*, 정창현, 김성은**
부경대학교 정보통신공학과
{eggshape*, jch123}@mail1.pku.ac.kr, kimsu@pku.ac.kr**

QoS Guarantee Framework with QoS Recovery Mechanism
in Next Generation OVPN

Mi-Ra Yoon*, Chang-Hyun Jung, Sung-Un Kim
Dept. of Telematics Engineering, Pukyong National University

요 약
IP망을 통한 VPN(Virtual Private Network)에서의 QoS 보장 매커니즘과 관대역폭 제공에 대한 해결책으로 차세대 공 인터넷을 통한 OVPN(Physical Private Network) 기술이 제시되고 있다. 차세대 공 인터넷의 구현이 IP/GMPLS(Generalized Multi-Protocol Label Switching) over DWDM(Dense Wavelength Division Multiplexing) 프로토콜 프레임워크로 표준화되고 있는 실현에 비추어, IP/GMPLS over DWDM 박스망을 통한 OVPN은 차세대 가상사업으로써 필수적인 서비스 제공을 위한 최적의 방법이다. 이러한 차세대 애플리에이션 서비스 제공을 위한 OVPN에서는 서비스 협약과 관대역폭 제공에 대한 조건으로 차세대 공 인터넷을 통한 OVPN기술이 제시되고 있다(1).

2. DOQS-OVPN 모델

1. 서 론
가상사업관 서비스란 인터넷 또는 통신사업자의 고품질전달으로 높은급변 인터넷으로 구성하여 서비스를 제공하는 기술로 고유의 서비스를 원활하게 제공하고 있는 기술이 대표적으로 사용되는 서비스이다. IP망을 통한 VPN란 인터넷의 가상공간으로 인터넷의 협약으로 통신하며 서비스 제공에 따른 QoS 보장 문제와 같은 IP망의 TDM(Time Division Multiplexing) 전송체계 사용으로 인한 전송용량 부족 문제를 안고있다. 이러한 IP 기반의 VPN에서 QoS 보장과 관대역폭 제공에 대한 해결책으로 차세대 공 인터넷을 통한 OVPN기술이 제시되고 있다(1).

차세대 공 인터넷 망망을 통한 OVPN과 같은 분야의 기술을 활용하고, IP 전달을 위한 제례 프로토콜은 GMPLS 기술을 사용하는 IP/GMPLS over DWDM 프로토콜과 프레임워크로 표준화되고 있는 실현에 비추어, IP/GMPLS over DWDM 박스망을 통한 OVPN(Over IP/GMPLS over DWDM)은 차세대 가상 사업장으로써 필수적인 서비스 제공을 위한 최적의 방법이다. 이러한 차세대 애플리에이션 서비스 제공을 위한 OVPN에서 서비스 협약과 관대역폭 제공에 따른 QoS 보장 및 관대역폭 기술이 절실히 요구되고 있으며, 본 논문에서는 차등화된 중 QoS 사람과 서비스를 제공하는 DOQS-OVPN 모델을 제시하고 제인된 OVPN 상의 QoS 지원 경로모성화의 QoS Failure에 대한 서비스별 차등화된 Recovery 능력을 갖는 QoS 보장 프로토콜 프레임워크를 제시한다. 이를 위해, 2장에서는 DOQS-OVPN 모델의 구조와 전체 동작을 제시하고, 3장에서는 OVPN에서 차등화된 중 QoS 보장 및 관대역폭 제공에 따른 QoS Failure를 분석하고 제인 위해 사용자를 차등화된 QoS Recovery 제공 프레임워크를 제시한다.

3. QoS Recovery 메커니즘

OVNP에서 QoS Failure는 [표 1]과 같이 크게 세 가지 관점으로 접근이 가능하다. OVNP 서비스 제공자와 협상한 기존의 Traffic Contract 위에 의한 Failure, 종 네트워크에서 발생하는 불용 소자와 갑작스런 고장이, 이의식적인 관계로 인해 발생하는 서비스의 동력능으로 인한 서비스를 말한다. 전송되는 신호의 품질이 줄어들어 서버와 QoS로 인한 서비스 품질로 나눌 수 있다.

<table>
<thead>
<tr>
<th>[표 1] QoS Failure 분류 및 결론방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>부문</td>
</tr>
<tr>
<td>Traffic Contract 위에</td>
</tr>
<tr>
<td>services에</td>
</tr>
<tr>
<td>QoS Failure Manaement Agent(QoS-FMA)</td>
</tr>
<tr>
<td>Light Switching</td>
</tr>
<tr>
<td>Optical Resource Management Agent(ORMA)</td>
</tr>
<tr>
<td>Link Management Agent</td>
</tr>
</tbody>
</table>

앞서 분석한 QoS Failure 중에서 Traffic Contract에 의해 예상되는 SLA 체결 과정에서 경로를 설정하지만 서비스 플랫폼은 갑론으로 예상되는 여러 데이터에 광경로를 생성할 때 발생하고, 이에 따라 QoS Failure를 유발할 수 있다.

[그림 2] QoS Failure 경로 모델

서비스 품질은 결과적으로 손실의 반도나 갑론이 되므로 [그림 2]의 결과는 QoS Failure 경로 모델의 Power Monitoring 과정에서

이러한 QoS Failure의 검출 후의 Recovery 절차는 일반적으로 Failure Localization, Failure Notification, QoS Recovery(Protection/ Restoration)의 단계로 수행된다.[4]

Failure Localization은 Failure 발생 위치를 통보하여 고정한 요소를 기반의 트래픽과 분리시키는 지역화 과정으로, [그림 4]와 같이 이로 노드간의 경로 관리 프로토콜인 LMP와 노드의 OLS 사이의 상호 정보 교환을 위한 LMP-WDM의 Fault Management 기능을 사용한다.

![그림 4] Failure Localization 절차

Failure Notification은 경로상의 중간 노드들에 Failure의 발생을 알리고, 해당 서비스의 이용이 불가능한 경로를 최적 경로로 수행해야 하는데 사용된다. Failure 발생을 알리기 위해 LMP는 Notification 메시지를 생성하여 Service 클래스에 따른 경로를 최적 경로로 수행해야 하는데 사용된다.

Assured 서비스의 경우, 노드간에 손실된 경로를 대체하기 위한 복구경로를 동적으로 찾아야 하므로 Ingress CE의 Failure 발생 알림을 알리기 위해 LMP은 ChannelStatus를 보내고 QoS-TCP 서비스에 QoS 요구사항을 만족하는 새로운 경로 계산을 요구하여 복구 경로를 설정한 후 트래픽을 스위칭한다.

Best-effort 서비스의 경우 IP 레이블 복구 스위칭을 사용하여 TCP 재연결을 통해 보상한다.

4. 결론 및 향후 제언

본 논문에서는 응용화된 복구 QoS 서비스를 제공하는 DOGS-OVPN 모델을 제안하고, 제안된 모델에서 발생 가능한 QoS Failure를 발생시키어 서비스 클러스터를 지원하는 Recovery 메커니즘을 제시하여 QoS 보장을 위한 프로토콜을 제안하였다.