효율적인 이동성 관리를 위한 사전등록영역 구성

서해숙 1, 한상범 2, 이근호 3, 황종선 4
고려대학교 정보통신대학원 컴퓨터학과
1 suh@kida.re.kr, 2 hunsb@kt.co.kr, 3 root1004@korea.ac.kr, 4 hwang@disys.korea.ac.kr

Organizing Shadow Registration Region for Efficient Mobility Management

Heyi-Sook Suh 1, Sang-Bum Han 2, Guen-Ho Lee 3, Chong-Sun Hwang 4

Dept. of Computer Science, Korea University,
1, 5-ka, Anam-dong Sungbuk-ku, Seoul, 136-701, Korea

요 악

모바일 컴퓨터 환경은 크게 모바일 노드, 무선망, 그리고 이동성이라는 기술로 이루어진다. 이동성이란 (seamless) 이동성을 제공하기 위한 기존의 Shadow Registration 방식은 랜드오포가 발생하기 이전에 이동한 모든 노드들(AAAp)에게 모바일 노드의 관련 정보를 사전등록(Shadow Registration)하는 방식을 계산하여 랜드오프 이후에 발생하는 결함이나 지원을 방지하였다. 그러나 이러한 Shadow Registration의 경우 백통 네트워크에 별도로 트래픽 발생 및 데이터 전송이라는 문제를 야기시킨다. 본 논문은 이러한 문제점을 개선하고자 새롭게 사전등록 트리거 영역(STR: Shadow Trigger Region)을 설정하고, STR 내에 모바일 노드(MN)가 위치할 경우 MN의 이동 방향을 이용하여 최소한의 사전등록영역(SRR: Shadow Registration Region)을 찾아내는 방법을 제안한다. 결과적으로 제안한 SRR는 최대 2개의 이동노드(AAAp)에게만 사전등록을 요청하면 되므로, 기존의 방법에 비해 최대 2n-2번의 사전등록 횟수를 줄여서 결함과 지원도 방지할 수 있는 효과적인 방법이다.

1. 서론

최근 인터넷과 이동성이 근본적으로 우리들의 삶에 크게 영향을 미치고 있고 미래에는 더 많은 영향을 가질 것이다. 세계적인 컨설팅 회사인 Gartner 그룹의 2000년 3월 보고에 의하면, 2003년경에는 온라인 쇼핑몰이나 PDA 등과 같은 이동 기기의 수가 PC의 수를 초과할 것으로 한다. 전자정의 이용이 과도한 무선 및 이동성을 가장하기 위한 관련 표준화는 조기하나 이동성의 문제점이다. 이동성과 관련된 이전의 연구들은 이웃하는 세로의 이동자 환경을 이용하는 Random-walk model을 일반적으로 사용함으로써 이동한 모든 노드들에에 정보를 볼트로스팅함으로써 발생한 트래픽 발생 및 추가적인 데이터 전송이 필요했다. 본 논문은 이러한 문제점을 개선한 최소한의 사전등록영역(SRR: Shadow Registration Region)을 구성하는 방법과 관련된 연구를 대상으로 하였다.

제 2장에서는 이동성 관리의 문제, 사전등록(Shadow Registration)의 개념 등 본 연구와 관련된 기존 연구 내용을 살펴보고, 3장에서는 새롭게 제안하는 SRR을 구성하는 과정과 알고리즘, 그리고 기존 방법과의 비교 결과를 보여준다. 4장에서는 결론으로 요약 및 향후 연구방향을 포함하여 있다.

2. 관련 연구

2.1 이동성 관리

IP 기반 통신망에서 사용되는 이동성 관리 방법에는 Mobile IP, SIP 및 H.323 등이 있다. Mobile IP[1,2]는 네트워크 중에서 이동성을 해결하는 프로토콜이며, SIP[3,4,5,6,7,8,9]과 H.323은 응용 중계에서 이동성을 해결하는 프로토콜이다. 무선 환경에서 이동하는 서비스 제공해야 하는 이동성은 고품질의 퀄리티오브서비스 제공을 위해 필요하며, 이러한 방식이 제안된 사전등록(Shadow Registration Region)을 구성하는 방법과 관련된 연구를 대상으로 하였다.

2.2 사전등록(Shadow Registration)

으로 이동할 때 핸드오프와 같은 작업을 동반한다. 이때 모바일 노드(MN: Mobile Node) 사용자는 반드시 자신의 네트워크에 있는 AAA(Authorization, Authentication, Accounting) 서비스에 의해 인증되거나 인증되어야 한다. 이러한 AAA 솔루션은 모바일 노드가 서로 다른 도메인 간의 핸드오프마다 해결되어야 한다.

Shadow Registration 방법에서는 계산된 핵심 내용은 실제 핸드오프가 일어나기 전에 MN와 이중화되는 설계에 Security Association(SA) 생성을 돕는 것이다. 그러므로 MN가 이중 세션이 끝나면 AAA(이중 네트워크의 AAA 서비스)를 경유하지 않고 그 설 내에서 직접적으로 처리할 수 있다. 즉, SA를 세션에 확립하여 지연 및 끝점을 없애는 것이 [10]에서의 핵심이다.

Shadow Registration을 위한 기본적인 시그널링 메커니즘은 그림 1과 같다. MN가 방문 네트워크에서 자신을 등록하고자 할 때, AAAF(방문 네트워크의 AAA 서버)는 MN에 Request 메시지를 보내게 된다. 이때, AAAF는 Request 메시지에 새로운 이중화된 MN과 혹은 이중화된 도메인들에 대한 정보를 추가한다. 이와 같이 이중화에 대한 메시지를 받으면 각 추가된 정보를 유지하고 있다. 즉, 이메일(IPA)이 이중화된 도메인에 MN을 사용할 수 있는 지지를 제공하여 AAAA에게 도달하기로 한 MN을 등록할 때 Shadow Registration을 위한 Answer 메시지를 이중화된 MN의 네트워크에 보낸다. Shadow Registration을 위해 추가되는 메시지는 AAAA에서 AAAF로 보내지는 Answer 메시지로써 관련된 모든 이중화 서비스에게 보낼게 된다.

그림 1. Shadow Registration 이 포함된 SIP의 시그널링 흐름

3. Shadow RegistrationRegion(SRR) 구성과 결과

이동통신망에 특정 MN 및 그곳과 관련된 사용자의 존재와 위치를 알려주는 방법을 등록을 통하여 이동성 제공한다. 핸드오프 이동을 하는 방법은 핸드오프 시간대간 짧지치 않으며, 지연도 인쇄에 사용된 서비스에 저장소 공유할 수 있다. 이를 개선한 Shadow Registration은 핸드오프가 발생하기 이전에 이므로 모든 도메인들에게 동시에 AAAA의 공유 내용을 알리게됨으로서 핸드오프시의 짧은 시간을 없앤 방법이다. 즉, 핸드오프가 일어났을 때 MN의 정보를 얻고자 할 때도 그 정보를 받을 필요가 없다. 따라서 SSA(MN 혹은 사용자) 자신의 공유 내용을 맡겨 떠나면 네트워크의 연결 상태가 좋을 때 아주 효과적이며, 그러므로 이와 같은 Shadow Registration 방법으로 서비스는 주어지거나 처리되지 않아도 된다. Shadow Registration은 이와 같이 처리되고 있다. 이와 같이 이러한 세션 등록 트리거 영역(SR: Shadow Trigger Region)을 설정하면 MN가 이전 세션 내에 위치할 때 세션을 수행할 영역(SRR: Shadow Registration Region)을 추출하는 새로운 방법을 제안하고 기존의 방법과의 우위성을 살펴본다.

3.1 세션 트리거 영역(SR) 설정

본 논문에서는 사용할 이동통신 시스템은 각 기지국(Base Station)에 의해 관리하는 여러 단위로 분할된 유틸리티 셀 모델로 사용한다. 모든 기지국 셀을 원점으로 선택하고 이 원점 중심으로 X축과 Y축이 120°의 각각으로 교차되며, 각 기지국 셀 중심으로 X축과 Y축의 각 방향으로 셀 하나당 삼각형 1개로 구성시키거나 또는 감소시키는다[17].

SR을 설정하고 핸드 오브를 축구로 하는 움직임 셀 하나를 대상으로 모델링하면 그림 2와 같다. 유틸리티 셀의 중심점을 (Xc, Yc)라 하면, 핸드 오브 X축과 Y축을 중심으로 각각 1개씩 추가하거나 감소된 좌표 값으로써 각 셀의 특정 값으로 사용한다. 즉, 위에서부터 시계방향으로 6개의 셀 좌표 값은 (Xc, Yc+1), (Xc+1, Yc+1), (Xc+1, Yc), (Xc, Yc-1), (Xc-1, Yc-1), (Xc-1, Yc)가 된다.

그림 2. 유틸리티 셀을 이용한 SR 설정

그림 2는 섬 경계선과 핸드오브 시각 경계선으로부터 핸드오브 영역(HR: Handoff Region) 및 사전등록 트리거 영역(SR: Shadow Trigger Region)을 잡는 예를 보여주고 있다. 핸드오브 시각 경계선은 MN이 이전 셀로부터 밖으로 하여 경계가 정점 일정 간격(threshold) 이상이 되는 지점을 기준점(envelope point)의 좌표값으로부터 구성할 수 있다. 즉, 그림 2의 예에서 표시된 6인 정삼각형에서 enveop point는 triangle unit을 구성하는 것이다. 이러한
Triangle unit를 중심으로 확대해보면 육각형 셋의 한
면을 구성하게 되고 이 경우 정사각형임을 알 수 있다.
이렇게 육각형 셋은 Triangle unit 등의 부분집합으로 이
간한 형태를 나타낸다. 그림 2의 예에서는 정사각형의 한
변의 길이(\(d\))가 반지름(\(r\))의 1/4 임을 알 수 있다. \(r\)을
이름은 Triangle unit의 크기 구조에 따라(반 \(r\)의 길이
에 따라) 반지름의 늘어난 비율(\(d\))가 달라지게 된다.

**<계의 1> Triangle unit(\(d\))**

\(r\)을 구성하는 하나의 정사각형을 Triangle unit
이라 한다. 이러한 Triangle unit가 모여 하나의
각형을 구성한다.

**<계의 2> 핸드오프 시작 경계선(Hand off Start Boundary)**

 anomalously 부터 \(a\) 만큼 범위가, 다시 하에 중심으로부터 \(X\) 축에 \(r\) 만큼 범위에 지정된 \(X_{ct}\) (\(A_{3}\))과
\(Y\) 축에 \(r\) 만큼 범위\(X_{ct}\) (\(A_{3}\))에서 만드는 6 개의

**<계의 3> 사전등록 트리거 경계선(Shadow Trigger Boundary)**

 anomalously 시작 경계선으로부터 Triangle unit(\(d\))의
높이(\(a\))만큼 중심 쪽으로 이동해서 만드는 6 개의
지점 S1, S2, S3, S4, S5, S6을 이온 삼각이다. 즉, 반
지름의 \(d-h\) 곳의 편이 이로 인해 삼각을 만든다.

**<계의 4> 핸드오фф 영역(HR: Hand Off Region, )**

 anomalously 시작 경계선으로부터 사전등록 사전
경계선까지의 영역을 말한다. HR가 이 영역
위치에 따라의 확대여부가 결정된다.

**<계의 5> 사전등록 트리거 영역(SIR: Shadow Trigger Region, )**

 anomalously 시작 경계선으로부터 사전등록
경계선까지의 영역을 말하며, MN가 이 영역
위치에 따라의 확대여부가 결정된다.

**<계의 6> 등록 불가영역(NRE: Non-Registration Region, )**

 anomalously 사전등록 트리거 경계선으로부터 중심점까지의 영역으
로서 MN가 이 위치에 있을 때 사전등록이 필요없다.

### 3.2 사전등록 영역(SIR) 설정

MN의 위치가 기지국의 방향성 안테나를 이용하여
육각형 셋을 120°씩 분할(0°, 60°, 120°, 180°, 240°,
241°, 240°)로 같은 사용한다. 이는 경계가 직선하
고 기존의 시스템을 그대로 사용할 수 있는 점이
이용하기 원만하다. 위치기반서비스(LBS: Location
Based Service)나GPS(Global Positioning System),
또는 적외선 센서 등을 이용하여 더 정확한 위치 감
출 및 하나의 SIR만의 추가도 가능하다. 설명된
정의들을 사용하여 SIR을 설정하면 다음의 표 1
과 같고, SIR 설정 알고리즘은 그림 3과 같다.

#### 표 1. SIR 설정값

<table>
<thead>
<tr>
<th>MN의 화면</th>
<th>MN의 위치</th>
<th>방향 벡터</th>
<th>SIR-1</th>
<th>SIR-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ HR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
</tr>
<tr>
<td>61</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
</tr>
<tr>
<td>62</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
</tr>
<tr>
<td>83</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
<td>(X, Y) ∈ STR</td>
</tr>
</tbody>
</table>

### 3.3 실험 결과

기존의 방법의 일반 동록은 핸드오프 이후에 해당
되는 1 개의 이웃 노드(\(AAAF\)에게만 동록을 하지만.
이해 결과와 차이가 발생한다. Shadow Registration
방법은 최대 \(n\) 개의 이웃노드(\(AAAF\)에게 사전등록을
요청하고 \(n\) 개의 이웃노드에서 클린 데이터를 저비용
한다. 본 논문에서 제안한 SIR은 최대 \(n\) 개의 이
웃노드(\(AAAF\))에게만 사전등록하고 데이터를 관리한
기존의 방법에 비해 최대 \(n\) 개의 사전등록 횟
수를 줄이면서 결과과 차이를 저비용한다.

#### 그림 3. SIR 설정 알고리즘

4. 결론 및 향후 연구의계

본 논문에서는 Macro mobility 핸드오프 시 갱신이나 지
연을 방지하고 불필요한 네트워크 트래픽이나 데이터 관
리 문제에 대응을 통합된 관리 방법으로서 사전등록
트리거경계선(\(SIR\))을 설정하고 최소한의 사전등록영역
(\(SIR\))을 결정하는 방법을 제안하였다. 이와 같은 영역
구성법은 저비용한 비용으로 응용성을 구축하고자 할 때 유용하다는
또한 향후 SIR 및 SIR을 사용한 통신학 응용
이와 관련한 연구를 대대적으로 선언하고자 한다.

### 참고문헌


Internet-unicast signaling,” IEEE Communications Magazine,

Internet Engineering Task Force, October 2000.


Management for VoIP service: Mobile IP and SIP,” IEEE

321