Simplex Search를 이용한 LCD Backlight Unit 내부의 도광판 인쇄패턴의 자동 최적화

*국립대학교 컴퓨터공학부 ** 컴퓨터과학고등학교 ***서울대학교 전기컴퓨터공학부 네트워크공학과

Auto-Optimization for LGD Dot Pattern in LCD Backlight Unit using Simplex Search

HyeKyung Seo*, YangSeong Ryu*, Eun-Chul Park**, NoKyung Kang***

SeongCheol Kim**, Joonsoo Choi**, Kwang-Soo Hahn***

*Kookmin University, Department of Computer Science, **MeO SYSTEMS, Inc.
***Seoul National University, School of Electrical Engineering and Computer Science

요 약

LCD(Liquid Crystal Display)는 자체 발광능력이 없으므로 그 후편에서 LCD 화면을 밝혀주는 BLU(Backlight Unit)를 필요로 한다. BLU의 백색부품으로서 용품으로부터 나온 빛을 LCD의 화면 방향으로 옮겨내어하는 역할을 담당하고 있는 부분이 바로 도광판이고, 빛을 퍼내는 방법으로 고르게 분포시키기 위해 도광판의 끝의 모양의 확산물질을 이용한다. 이 인쇄패턴은 결과의 형태가 줄어들기 쉬운 방식으로 사용하는 도광판을 제작하기 위한 도구로 중요하다. 이 인쇄패턴은 Simplex Search 알고리즘을 사용하여 자동화하기 위해 자동화한 수학적 방법을 제공으로써 도광판에 더 적절한 인쇄패턴을 찾을 수 있다.

1. 서 론

광판형 디스플레이로 현재 많이 보급되는 LCD는 소비전력이 적으며 경량, 백합형의 장점으로 PC, 노트북, 백합이 TV, Navigation용 역정표시장치 여러 용도에 적용되고 있다. 그러나 LCD는 자체 발생능력이 없으므로 그 후편에서 LCD 화면을 밝혀주는 BLU를 사용한다. BLU의 내부 구성으로부터 빛이 까만 흐대로 가며, 까만 흐대로 가며 가장 긴 부품을 만들인 LCD 패널부품으로 내부로 LCD 화면 전해 전송에 고르게 발산 전달하는 역할을 한다. 이 시, BLU의 크기와 형태로, 빛의 퍼내방향으로 고르게 이어가는 빛을 담당하는 부분이 도광판이고, 그 방향으로 도광판 하부에 접모양의 확산물질인 퍼브를 인쇄하는 방법이 있다. 각각의 인쇄되는 도트들이 BLU의 내부 구조로 부터의 가려지며, 그 크기를 다르게 함으로써 퍼브 방향으로 전달된 빛의 방향을 변경시킨다. 이때, BLU의 크기와 형태는 도광판의 크기와 모양과 도트들이 인쇄되는 각각의 크기가 달라지므로 BLU 상에 생성되는 영광판의 모양은 달라진다. 따라서 원하는 모 방향을 얻어내기 위해서는 제조에 갈수록 인쇄범위가 넓어지는 도광판을 생성하는 것이 중요하다. 그 방법 중 하나가 그림 1. 2와 같이 도광판 하부에 접모양의 확산물질(도트패턴)을 인쇄하는 방법을 사용하는데 단점에서 보아 약간의 인쇄층이 되어 참을 수 있는 부분이 더 적절한 인쇄패턴을 찾아내어야 한다. 그림 2는 이러한 빛 학파인 모양인 모방방법 또는 기계적 방법으로 도트 패턴이 약간의 모양 후에 인쇄된 도트의 크기를 이용해 적절한 인쇄를 사용하거나 제작한다.

2. 연구 개요

본 연구는 도광판의 크기모양을 예측하기 위해 고안된 시뮬레이션 모형[1]을 통해 실제로 개발되고 있는 BLU를 가상으로 컴퓨터상에서 모형화하였다. 그리고 그 모형을 예측하여 더욱 긴밀한 영광판을 생성하기 위해 인쇄패턴을 찾아내려 한다. 이를 도광판의 하부에 인쇄되는 인쇄패턴의 모양에 기반으로, 인쇄방법의 모양을 이를 도광판에 더 적절한 인쇄패턴을 찾기 위해 자동화를 위한 방법을 개발한다. 그림 1. 2는 사이드형(Side Type) 3D

[그림 1] 사이드형(Side Type) 3D
2.2 BLU 모형 및 시뮬레이션

2.3 Simplex Search 알고리즘

수학자 크리스토퍼롭스키, 프로토시,는 이러한 분야에서 다음과 같이 엔의 영역에서의 함수의 최소값을 구하는 문제가 많이 요구된다. 예를 들어, 새로운 태양기계계를 개발하고자 할 때, 함수 f는 기계의 불안정한 상태를 나타내고 이 f는 기계의 각도, 회전속도, 그리고 온도와 같은 변수에 의해 표현되는. 개발자는 기계의 불안정성을 최소화하기 위해서 가능한 f값을 최소화하는 변수들의 조합을 찾을 것이다. 이 조합을 찾기 위한 방법으로 Simplex Search 알고리즘을 유용하게 사용한다. Simplex Search 알고리즘은 다음과 같은 비례비례적인 함수 사용하는 방법을 사용한다. 즉, $f(x)$에서 최적화하기 위한 변수는 n개이고 n개의 변수의 조합이 하나의 점을 표현한다. $n+1$개의 점이 갖거나 한 칩의 정해진 한 실행의 생성자에서 가장 적은 함수 값을 갖는 점을 x_p라고 하자. 그렇다면, 가장 높은 함수값을 갖는 점을 x_n라고 하자. 이와 같은 방법을 n회마다 수행하는 것을 n회다. 이렇게 하면 다음과 같은 식이 성립한다.

$$f(x_{n+1}) \leq f(x_p)$$

이 알고리즘의 목적은 실행의 최소화의 점들을 근처의 최소의 함수값을 갖는 점으로 이동시킨다. 각 실행의를 조정하는 방법에 따라 SHH(The Simplex Search of Spreenley, Hext and Hinsworth)[3], NM(The Simplex Search of Nelder and Mead)[4] 그리고 SMDS(Sequential Multi-Directional Search)[5]가 있지만 이 방법은 모두 기세적으로 좋은 결과는 확보한다.

3. BLU 확성부품의 설계

도트의 인쇄계의 최적화 수치 전체에 우선 평행되는 BLU형태를 시뮬레이터 상에서의 설계가 필요하다.

3.1 램프 반사판(Lamp Reflector)

램프 반사판으로 설계할 수 있는 모델에는 4가지로써 Circle, Ellipse, Parabola, Hyperbola가 있고 각 모델에 따라서 Simplex와 Double Type가 있다.

3.2 도플랑(GDP)

도플랑으로 설계할 수 있는 모델로는 7가지가 있는데 그 중에서 하부면에 도트를 인쇄하기 위해서 Cube 형태로 모델링한다.

3.3 도트 패턴(Dot Pattern)

도트 패턴의 모델로는 원형의 큰 섬유를 배치하는 방법에 따라 Circular Grid, Circular Honeycomb, Hexagon Honeycomb들이 있다. 도플랑에 인쇄되는 도트의 면적 정도를 나타내는 밀도함수(Density Function)을 이용해서 램프 거리에 따른 서로 다른 크기의 도트를 설계한다.

주어진 설계는 좌표의 상하 대칭으로 표현된다.

4. Simplex Search를 이용한 인쇄패턴의 최적화

인쇄패턴의 최적화를 위한 Simplex Search 알고리즘으로는 SNN보다는 Nelder와 Mead에 의해 의난 NM 알고리즘을 사용한다. 그 이유는 NM이 SNN보다 더욱 유용한 심플렉스 이동을 제공하기 때문이다[6].

4.1 최적화 파라미터의 초기값 설정

최적화 파라미터는 인쇄패턴의 일돌수수의 계수가 사용한다. 따라서 본 연구에서는 최소 4개에서 최대 12개까지의 최적화 파라미터를 설정할 수 있다. 만약 계수의 개수가 n개일 경우, $f(x)$에서 $n+1$개의 점으로 이루어진 심플렉스가 초기화된다. 우선 심플렉스의 한점과 각 점에 대한 이동 범위는 사용자에 의해 조정된다. 그러한 심플렉스의 나머지 n개의 점에 대해서 다음과 같이 초기화를 한다.

$$n\text{th} \cdot Pt = f^{-1}(\text{Low}(f(n\text{th}
\text{Initial Value} - n\text{th}
\text{Range}),
\text{High}(f(n\text{th}
\text{Initial Value} + n\text{th}
\text{Range})))$$

4.2 함수값 계산

BLU의 시뮬레이션 결과로 그림과 같은 도트를 얻을 수 있다. 그림과 같은 도트는 도플라의 패턴부분의 영역을 결정하기에 그리스의 도구로 사용되며 해당 영역을 확장시키는 데 도움이 된다. 그림과 같은 도트를 얻기 위해서는 각각의 도트를 포착하고 그 도트의 구성 요소중 적어도 하나는 최대값 또는 최소값의 차이를 비교하여 그 수치가 작을 것을 찾는 방법이 있다. 이러한 표준화나 최적화 차이를 Simplex Search의 함수로 사용한다.
4.3 재현 및 계산결과

Simplex Search는 흔한스 크 방법이기 때문에 올바른 최적
을 찾기보다는 주어진 시간 내에서 최적의 값을 찾도록 하
다. 따라서 다음과 같은 재현 조건을 정해두면서 조건을 만
족시키면서 알고리즘을 종료함으로써 무한정 알고리즘이 반복
되는 것을 막고 일정 수준의 최적의 값을 찾도록 한다.
- 알고리즘의 반복 횟수가 저장된 반복 횟수보다 같거나
 크다.
- Simplex Search 함수의 계산 횟수가 저장된 최대 계산
 횟수보다 많다.
- 함수값이 가장 큰 점을 지칭하는 n개 점의 평균값을
 각 점과의 거리의 합이 저장된 오차 이하일 때.
- 함수값이 가장 작은 점과 각 n개의 점과의 거리의 합이
 저장된 오차 이하일 때.
- 알고리즘의 반복 반복 횟수 동일한 최적값이 일정 이상 반
 복할 때.

4.4 심플렉스의 이동

SNH에서의 심플렉스는 단지 대칭과 축소를 하는 반면,
NM에서는 대칭(ρ), 확장(γ), 축소(σ)를 한다. 우선
심플렉스의 모든 점을 사용하여 각 점에서 n개
의 평균값을 사용하여 미지막 n번째 점을
대칭시킨다(\(x_n^{*} = \frac{x_n + x_n^0}{2}\)). 만약 대칭시킨 점이 0
번째 점보다 함수값이 작으면 대칭 방향으로 더욱
확장(\(x_{n+1}^{*} = x_n^{*} + \gamma (x_n^{*} - x_n^0)\))하고, 만약 대칭시킨 점이 기존 심플
렉스의 n-1번째 점의 함수값보다 크거나 같으면 심플렉스
는 수축한다. 대칭성이 심플렉스의 n번째 점과 평균값의
점이 영향을 미치게 되므로 심플렉스의 n번째
주의 점에 중점을 둔다. 그러므로 있을 경우
내부수축을 한다(\(x_{n+1}^{*} = x_n^{*} + \gamma (x_n^{*} - x_n^0)\)). 만약 이전
대칭, 확장, 수축의 어떠한 방법으로도 심플렉스의 n번째
점이 함수값보다 작다면 둘러서는 점들 둘러서는 점들
모두 점이 대해서 \(x_n^{*}\)를 다음과 같은 점으로 대체함으로써
심플렉스의 중심으로 축소로 \(z' = x_n^0 + \sigma (x_n^0 - x_n^{*})\)
한다. 그리고 동일 조건이 만족되며 동일하고 그렇지 않으
면 k = k + 1로 하고 점 반복 단계를 정정 단계로 한다.

5. 실험결과

그림 4와 5는 컴퓨터 반사광과 Parabola를 사용하고 인
쇄결과를 나타내는 하나의 일원성 파리미터로 하여
시뮬레이션 한 결과이다. 일원성의 초기값을 \(y = 1\)
로 하여 최적화 과정에서 균일도를 비교하기 위한 Simplex
Search 함수는 표준편차를 사용하였다. 최적화 후 시뮬레이
션 결과에 보이는 일원성은 그림 6에 나타내는 그래프로, 최
적화의 반복 반복 횟수를 나타내 그래프이다.

\[
y = -0.044362x^3 + 1.12816x^2 - 0.365656x - 1.418618
\]

[그림 6] 최적화된 일원성의 일원성 함수

그 결과 최적화된 일원성은 매번의 경우에서
부분에서 높은 수치를 갖는 것을 알 수 있다.

6. 향후계획

최적화에 따른 초기값에 따라서 그 결과에 많은 영향을 치
킨다. 제한되는 일원성의 결과가 달라질 수 있으며, 또한 결과
를 얻을 수 있는 시간이 훨씬 더 오래 걸릴 수 있다. 따라서
최적화 과정의 초기값을 제한하기 위해서는 이전 값과의
중복 값을 주거나 일원성이 있는 값과의 중복 값을 제한하기
하여야 한다. 이러한 초기값에 대한 연구와 최적화 과정에
대한 피라미드를 최적화 과정에 적용하여 더욱 효율적인 GSI
의 프로토타입을 제안하는 연구가 필요하다.

7. 참고문헌

[1] 박은철, LDC Backlight Unit 설계를 위한 3차원 모의

[2] 대표, 김영진, 이상석, 박승구, 최동식, 김영지, [광학
적기법을 이용한 LCD Backlight Unit 시뮬레이션 재현
에 관한 이론, 한국전자공학회 학술발표논문집

application of simplex designs in optimization and evolutionary

[5] Virginia Torczon, Multi-Directional Search: A Direct
Search Algorithm for Parallel Machines, PhD thesis,
Department of Mathematical Sciences, Rice
University, Houston, Texas, 1989.

Optimization, 2000 Honors Thesis in
Computer Science from the College of William & Mary in Virginia, 2000.