그리드 환경에서의 사이트 자율성을 보장하기 위한
접근 제어 시스템 개발

김병진*, 황호진, 유길수*, 곽의중, 안동연, 정성중, 장형진**
전북대학교, *세남대학교, **한국과학기술연구원
{kyun**, mainclass, hjhwang, dgs}@duan.chonbuk.ac.kr.kr
{ke, duan, sjuchung}@moak.chonbuk.ac.kr.kr
hijiang@hpcomnet.ne.kr**

Implementation of Access Control System
for Site Autonomy in Grid Environment

Beobkyun Kim, Kyounigik Jang, Haleza Hwang, Gilsu Doo*, Euijong Kwak, Dongun Ahn,
Seungjong Chung, Haegjin Jang**
Dept. of Computer Engineering, Chonbuk National University
Dept. of Electric & Electronic Engineering, Seonam University*
Korea Institute of Science and Technology Information**

요 약
지리적으로 분산된 이 기존의 유튜 자원들을 서로 연결하여 가상의 고성능 컴퓨터형 자원으로 사용하는 그리드
에서 자원에 대한 접근 제어 시스템의 구축은 필수적이다. 본 논문에서는 자원에 대한 접근 제어 시스템을 설
계 및 구현한다. 특히, 그리드 환경 구축 시 가장 많이 사용되는 Globus Toolkit을 기반으로 하고 각 자원을
제공하는 사이트의 자율성을 보장하는 지원 접근 제어 시스템을 설계 및 구현하였다.

1. 서 론
인터넷이 보편화되고 컴퓨터 및 네트워크 성능이 향상
됨에 따라 분산 자원 기반의 고성능 어플리케이션들은 더
 큰 컴퓨터 과학을 요구하고 있다. 그리드는 자동적으로
분산된 고성능, 대용량의 자원들과 중요 장비들을 원격에
서 동시에 사용하여 단일 시스템처럼 사용하는 환경
이다. 이런 그리드 환경에서 어플리케이션을 수행하기 위
해는 각 자원에 대한 접근 권한을 가지거나 비슷한 수준
의 제어권을 가지고 있어야 한다. 따라서, 그리드 환경의
작용과 보안을 위해서는 자원 접근 제어 시스템이 반드시
구현되어야 한다.

그리드 환경에 대한 자원의 제공을 위해 자원의
고유한 운영 절차를 수용해서는 안된다. 즉, 각 사이트의
자율성을 보장해 주어야 한다. 각 자원 소유자의 그리드
환경에 대한 자원 제공 의무 채무를 위해서는 각 자원 소
유자의 고유한 운영 절차를 그리드 환경에서도 그대로 적
용할 수 있어야 한다.

본 논문에서는 그리드 환경에서의 자원 접근 제어 시스
템을 설계 및 구현한다. 특히, 그리드 환경 구축시 가장
많이 사용되는 Globus Toolkit을 기반으로 하고 각 자원
의 소유자의 자율성을 최대한 보장할 수 있는 구조로 설계
및 구현하였다.

2. 접근 제어 시스템 설계 및 구현

2.1 Globus Toolkit에서의 접근 제어

Globus Toolkit은 현재 실행되고 있는 그리드 환경 구
축 프로젝트에서 가장 많이 사용되는 이들로이다.
Globus Toolkit에서는 사용자의 해당 자원에 대한 접근 권
한을 "grid-mapfile"에 사용자의 DN과 로컬 자원의 계
정을 함께 기록함으로써 부여한다. 기본적으로 다수의 DN
과 하나의 로컬 계정이 결합 가능하며 각 DN은 신뢰가능
한 CA (Certificate Authority)에서 부여받은 인증서로 확
인한다.

그림 1. grid-mapfile

이러한 방식은 다수의 DN과 하나의 로컬 계정이 결합
됨으로써 로컬 시스템 내에서 발생하는 가족이 어느 외부
그리드 사용자가 발생시킨 것인지 추적하기 힘들다. 이를
추적하기 위해서는 작업을 제출할 때부터 사용자의 행위를 추적하는 별도의 모니터링 모듈이 필요하며 로컬 시스템에 당당한 부하를 줄 수도 있다.
또한, 시스템에 대한 접근 권한 요청이 수시로 일어나므로 관리자가 일일이 대응한다는 것은 상상할 수 없는 별도의 어느 정도 자동화된 시스템이 필요하다.
그러나 외부 사용자와 로컬 계정은 일반적으로 1:1 결합되는 것이 보안 및 시스템 유지 관점에서 가장 적절한 형태라는 것이 일반적인 의견이므로 이러한 처리를 위한 모듈은 필수적이라 할 수 있다.

2.2 접근 제어 시스템의 설계

따라서, 본 논문에서는 이러한 문제점을 해결하고 그리고 환경에서의 부가 서비스를 위해 다음과 같은 접근 제어 시스템을 설계하였다.

![그림 2. 접근 제어 시스템](image)

그림 2. 접근 제어 시스템

이러한 사용자는 각 로컬 자원을 사용하기 이전에 각 로컬 자원에 위치한 접근 제어 시스템에 로컬 자원 사용을 위한 백업장 요청을 해야 한다. 이 때, 사용자는 자신의 신상 정보와 함께 자신이 염두한 자원의 명세를 보내야 한다.

접근 제어 시스템은 사이트 관리자가 수립한 그린드 사용자 관리정책, 그룹 관리 정책, 호스트 관리 정책 등을 참조하여 사용자가 제공한 신상 정보가 등록 가능한 사용자인지판별하여, 사이트 자원 관리 정책과 로컬 자원의 상태 등을 참조하여 제공 가능한 수준의 자원 요구사항을 판별하게 된다. 만약, 등록 가능한 사용자이고 제공 가능한 수준의 자원 요구사항, 사용자에게 발급할 로컬 계정을 선택하여 사용자에게 그 정보를 제공한다.

사용자는 이 정보를 바탕으로 스케줄링을 마치고 작업을 수행한다.
예를 들어, limits.conf와 같이 기존의 시스템에서 활용한 사용자 관련 설정 파일들은 이용하여 일관 을 유지하며 그 이외의 앱운행 관련 정책 등도 새로운 설정 파일을 이용하여 사이트의 자율에 맞게도 설계하였다.

그림 5. policy-user.conf

2.3 접근 제어 시스템의 구현

본 논문에서 구현한 시스템은 각 플랫폼에서 동일하게 적용할 수 있도록 파일을 사용하였다.

그림 6. 권한 요청 수락 결과

3. 결론 및 향후 연구 과제

본 논문에서는 그린 플랫폼의 구축에 있어서 필수적이며 할 수 있는 접근 제어 시스템을 Globus Toolkit을 기반으로 Globus Toolkit에서의 문제점을 해결하고 기존에 사용한 각각 사용자 및 자원 관련 설정 파일들과 그리고 환경에 필요한 새로운 설정 파일을 도입하여 자원 제공자의 관리 정책을 그대로 반영할 수 있도록 설계 구현하였다.

앞으로, 좀더 세밀한 제어를 위한 추가적인 연구와 함께 이를 이용한 앱운행 및 과공 서비스와 같은 부가 서비스에 대한 연구가 필요하다.

참고문헌