Graphical Diagnostics for Logistic Regression

Hakbae Lee*

Abstract

In this paper we discuss graphical and diagnostic methods for logistic regression, in which the response is the number of successes in a fixed number of trials.

Key Words: Logistic regression, Central subspaces, Regression graphics, Sliced average variance estimation.

1 Introduction

2 The Central Subspace

Let B denote a fixed \(p \times q, q \leq p \), matrix so that

\[
y \perp x | B^T x.
\]

(1)

This statement is equivalent to saying that the distribution of \(y|x \) is the same as that of \(y|B^T x \) for all values of \(x \) in its marginal sample space. It implies that the \(p \times 1 \) predictor vector \(x \) can be replaced by the \(q \times 1 \) predictor vector \(B^T x \) without loss of regression information, and thus represents a potentially useful reduction in the dimension of the predictor vector. If (1) holds then it also holds when \(B \) is replaced with any matrix whose columns form a basis for \(S(B) \). Thus, (1) is appropriately viewed as a statement about \(S(B) \), which is called a dimension-reduction subspace for the regression of \(y \) on \(x \) (Li 1991, Cook 1994a).

Let \(S_{y|x} \) denote the intersection of all dimension-reduction subspaces. In this article, \(S_{y|x} \) is assumed to be a dimension-reduction subspace and, following Cook (1994b, 1996, 1998a,b), is called the central subspace.

Binary responses cause no conceptual complications for the central subspace, but construction and interpretation of summary plots in practice must recognize the nature of the response. Here we rely on binary response plots as developed by Cook (1990). For example,

*Assistant professor, Department of Applied Statistics, Yonsei University.
if it was inferred that \(\text{dim}(S_{y|x}) = 3 \) then the summary plot would be a three-dimensional binary response plot with the coordinates of \(\eta^T x \) assigned to the axes of the plot, and the points colored to indicate the states of \(y \).

Let \(\Sigma_x = \text{Var}(x) \), which is assumed to be non-singular. Without loss of generality, discussion in the rest of this article will mostly be in terms of the standardized predictor

\[
z = \Sigma_x^{-1/2} (x - E(x))
\]

The corresponding sample version \(\hat{z} \) is obtained by replacing \(\Sigma_x \) and \(E(x) \) with their usual moment estimates, \(\hat{\Sigma}_x \) and \(\hat{x} \). The columns of the matrix \(\gamma = \Sigma_x^{1/2} \eta \) form a basis for \(S_{y|x} \), the central subspace for the regression of \(y \) on \(z \). Thus, there is no loss of generality when working on the \(z \)-scale because any basis \(\gamma \) for \(S_{y|x} \) can be back-transformed to a basis \(\eta \) for \(S_{y|x} \).

3 \SAVE and Logistic Regression

For notational convenience let \(\mu_j = E(z|y = j) \), \(\Sigma_j = \text{Var}(z|y = j) \), \(j = 0, 1 \), and \(f = \Pr(y = 1) \). We assume \(0 < f < 1 \). Finally, let \(\nu = \mu_1 - \mu_0 \) and \(\Delta = \Sigma_1 - \Sigma_0 \).

Lemma 1

\[
S_{\SAVE} = S(\Delta, \nu)
\]

This lemma establishes two useful properties of \SAVE. First, like the other procedures, it gains information from \((\Delta, \nu)\), allowing use of the equivalent kernel matrix \(M = (\Delta, \nu) \). Second, it is the most comprehensive procedure without requiring the linearity or constant covariance conditions. Those conditions are needed to connect the various method-specific subspaces to the central subspace, but are not needed for Lemma 1.

Since the response is binary the distribution of \(y|z \) can be characterized by the conditional probability of “success”, \(\Pr(y = 1|z) \). Assuming that \(z|(y = j) \) has a density \(g_j \),

\[
\log \frac{\Pr(y = 1|z)}{\Pr(y = 0|z)} = \log \frac{g_1(z)}{g_0(z)} + \log \frac{f}{1 - f}
\]

This means that \(\Pr(y = 1|z) \) can be expressed via its logit in terms of the log density ratio. Now assuming that \(z|(y = j) \) is normally distributed with mean \(\mu_j \) and variance \(\Sigma_j \), \(j = 0, 1 \), it is known that

\[
2 \log \frac{g_1(z)}{g_0(z)} = C + z^T (\Sigma_0^{-1} - \Sigma_1^{-1}) z + 2z^T (\Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0)
\]

where \(C \) is a constant not depending on \(z \). It follows immediately from this characterizing expression that

\[
S_{y|x} = S(\Sigma_0^{-1} - \Sigma_1^{-1}, \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0).
\]

Lemma 2 Assume that \(z|y \) follows a non-singular normal distribution. Then \(S_{y|x} = S_{\SAVE} \).

If the linearity and constant covariance conditions hold, but \(z|y \) is not normally distributed, we will still have \(S_{\SAVE} \subseteq S_{y|x} \). However, there is no guarantee of equality because moments higher than the second may be involved. With just the linearity condition there is the added complication that \(S_{\SAVE} \) may “overestimate” \(S_{y|x} \) because of the presence of extraneous directions.
4 Example: Diabetes Data

For this first example we consider a data set on 724 patients with complete records from the National Institute of Diabetes and Digestive and Kidney Disease. Smith, Everhart, Dickson, Knowler and Johannes (1988) use this data set to forecast the onset of diabetes mellitus.

The binary response variable y equals 1 if a patient tested positive for diabetes and equals 0 otherwise. An examination of the data on the 6 predictors indicated that power transformations might be used to achieve approximately joint normality. Based on the standardized predictors z_i, the two SAVE predictors resulting from this analysis are

$$
\text{SAVE}_1 = -0.162z_1 + 0.621z_2 + 0.194z_3 - 0.431z_4 + 0.193z_5 + 0.572z_6 \\
\text{SAVE}_2 = 0.099z_1 - 0.070z_2 + 0.181z_3 + 0.530z_4 + 0.816z_5 - 0.079z_6.
$$

The span of the two vectors of coefficients in these predictors is the estimate of S_{SAVE}, which, because of the approximate normality of the transformed predictors, we expect is the same as $S_{y|x}$.

Shown in Figure 1 is the 2D binary response plot (Cook 1996) based on SAVE$_1$ and SAVE$_2$. This plot shows clear separation between the states of y, and could be used to guide the remaining analysis. Several options are available, depending on the precise goals of the study. For example, we could fit a logistic model in the predictors SAVE$_1$ and SAVE$_2$. Using results by Kay and Little (1987), see from Figure 1 that a logistic model for the regression of y on SAVE$_1$ and SAVE$_2$ will likely need a linear term in SAVE$_1$ and quadratic terms in SAVE$_1$ and SAVE$_2$. The linear term in SAVE$_1$ is needed because the two point clouds have different locations along the SAVE$_1$ axis. Quadratic terms in SAVE$_1$ and SAVE$_2$ would be needed because Figure 2 indicates that $\text{Var}(\text{SAVE}_j|y = 0) \neq \text{Var}(\text{SAVE}_j|y = 1)$ for $j = 0, 1$. The different variances for SAVE$_2$ are a little difficult to see in the plot, but are quite apparent when comparing marginal kernel density estimates (Figure 2). Figure 3 shows a plot of chi-residuals versus $-1.03 + 1.89\text{SAVE}_1 - 0.29\text{SAVE}_1^2 + 0.13\text{SAVE}_2^2$. The lowest smooth on Figure 3 is nearly constant, suggesting no evidence against the fitted mean function.

Summary plots such as those in Figure 1 is often useful in the development of first models for the regression. Let $g_j(x)$ denote the conditional density of $x|(y = j), j = 0, 1$, and assume that $g_0(x)$ is multivariate normal with mean μ_0 and covariance matrix Σ. Assume further that $g_1(x)$ is a mixture of normal densities,

$$
g_1(x) = \alpha g_{11}(x) + (1 - \alpha)g_{12}(x)
$$

where g_{1k} is the multivariate normal density with mean μ_{1k} and covariance matrix Σ, $k = 1, 2$. After a little algebra, the regression odds ratio can be expressed as

$$
\frac{\Pr(y = 0|x)}{\Pr(y = 1|x)} = \frac{\exp((\mu_0 - \mu_{11})^T \Sigma^{-1} x)}{\omega_0 + \omega_1 \exp((\mu_{12} - \mu_{11})^T \Sigma^{-1} x)}
$$

where ω_0 and ω_1 are unknown constants not depending on x. It follows that $\dim(S_{y|x}) = 2$ with

$$
S_{y|x} = \Sigma^{-1} S(\mu_0 - \mu_{11}, (\mu_{12} - \mu_{11}))
$$

The two vectors defining this subspace can be estimated directly from the subsets of the data corresponding the sub-populations.
Figure 1. Two-dimensional Binary Response Plot of Direction 1 from SAVE versus Direction 2 from SAVE. \(y=0 \) is marked with an open circle; \(y=1 \) with a star.

Figure 2. Histogram for two SAVE variables, with separate density estimates for the two values of \(y \).

Figure 3. Chi-square residuals versus fitted value using SAVE variables. A lowess smooth is shown on the plot.
Finally, we can re-express the odds ratio as
\[\log \frac{\Pr(y = 0|x)}{\Pr(y = 1|x)} = \eta_0 + \eta_1^T x - \log(1 + \exp(\eta_0^2 + \eta_2^T x)) \]
which provides a first (nonlinear) logistic model for the regression. It seems unlikely that we would have arrived at a model of this form without the guidance available from the summary plot.

5 Discussion

Approaching a regression through its central subspace is intended to allow construction of a low dimensional summary plot that contains or is inferred to contain all of the regression information available from the sample. Since a parametric model is not required, such plots can be particularly useful at the beginning of an analysis.

References

