고분자 광도파로용 핫엠보싱 마스터의 표면거칠기 최소화를 위한 열산화 영향

최춘기, 정명영
한국전자통신연구원 반도체원전기술연구소 광접속모듈팀

핫엠보싱 (Hot embossing) 기술은 고분자 기반의 광, 바이오 및 나노 소재에 직접 적용이 가능한 초미세 구조물을 제작하며 특유의 대량생산성이 가능하게 제작하는데 매우 유용한 방법으로 대두되고 있다. 엠보싱 마스터 (Embossing master)는 핫엠보싱 공정에 의해 초미세 구조물을 제작하는데 필수적인 금형 (Mold)으로 사용되며, 실리콘 웨이퍼 상에 습건식 식각을 이용하여 제작되는 실리콘 마스터와, LIGA (Lithography, Eletrodeposition, Molding의 독일어 약자)를 이용하여 제작되는 금속 (Nickel) 마스터로 크게 분류된다.

광도파로의 표면 거칠기는 빛의 산란을 야기하며, 광도파로의 광손실에 직접 영향을 미친다. 엠보싱 마스터에 의해 성형되는 광도파로의 표면거칠기는 엠보싱 마스터의 표면 거칠기에 의해 결정이 되므로, 엠보싱 마스터의 표면거칠기를 최소함으로써 광도파로의 광손실을 줄일 수 있다.

본 논문에서는 건식 식각 (DRIE) 후 열산화 (Thermal oxidation) 및 산화층 식각을 통해 실리콘 엠보싱 마스터의 표면거칠기를 최소화하기 위한 열산화 영향에 대해 기술하였다. 마스터 제작을 위해 (100) 실리콘 웨이퍼를 사용하였으며, 산화층 두께 400Å, 1000Å, 3000Å, 4500Å, 5600Å, 6200Å를 제작하기 위해 온도 1050°C에서 H2/O2 분위기하에 산화를 하였으며, NH4F : HF=6 : 1 BOE (Buffered oxide etch)를 사용하여 산화층 두께를 각각 같은 두께로 제거하였으며, AFM 측정으로 표면거칠기가 6nm (Ra) 이하로 개선되었음을 확인하였다.

AFM images : a. Before thermal oxidation, b. After thermal oxidation 1000Å+oxide etch