편재형 컴퓨터를 위한 Qplus-P 실시간 임베디드 운영체제

강우철*, 정영준 손동현 김가규 윤혁철 이형석

한국전자통신연구원(ETRI)
{wchkang*, jiing,dhson,ggkim,hcyun,hyslee}@etri.re.kr

Pervasive computing with Qplus-P real-time embedded operating system
Woochul Kang*, Youngjun Jung, Dongsan Son, Gaggil Kim, Heechul Yun, Hyungsuk Lee
Embedded Software Center
Electronics and Telecommunication Research Institute

요 약
프로세서, 센서 등의 소프트웨어의 작가격하는 어느 곳에서이나 유무선 네트워크를 연결되는 편재형 디바이스들의 출현을 가능하게 했다. 이러한 디바이스들은 점점 많은 기능을 가지고 만들어진 복잡한 기능을 제공하고 있다. 그러나 간의 사용 RTOS는 특정 제품에의 의존도가 높고, 애플리케이션용과 같은 새로운 편재형의 요구 사항을 지원하기가 쉽지 않으므로 이러한 환경변화에 적응하는 것이 어렵다. 따라서 소형의 흙묘 정보 단말에서부터 화소비미디어기까지 다양한 종류의 분산형 기기에 사용될 수 있는 확장성과 풍부한 기능을 갖춘 표준 실시간 OS의 개발이 필요하다. Qplus-P는 이와같은 편재형 컴퓨터를 지원하기 위한 실시간 소프트웨어 플랫폼이다. 이는 실시간 운영체제 커널, 애플리케이션 및 응용, 사용자 개발 도구가 포함된다. 특히 커널은 확장 가능한 구조를 제공하여 다양한 내장형 기기에 적응 가능한 이식성을 지원하며, 사용자 개발 도구는 특정 내장형 기기에서의 OS의 이식을 지원하는 개발 도구로 편리한 사용자 인터페이스를 제공한다.

1. 서 론
고속도 정보통신망 인프라가 구축됨에 따라 인터넷을 통하여 원격의 시스템과 멀티미디어 데이터를 교환하고 각종 제어 정보를 처리할 수 있게 되었으며, 가정 내에 있는 각종 정보 가전기기들 간에도 유무선의 고속 통신 방식으로 대상월 멀티미디어 전송이 가능해 지게 되었다. 따라서 원격에서 간단한 형태의 멀티미디어 복합 정보 단말을 이용하여 가정내의 멀티미디어 AV 기기를 함께 하는 것과 같은 새로운 응용이 가능하게 되었으며 이러한 기능을 제공하는 기기들이 출현은 어느 곳에 서나 유무선 네트워크 연결되는 편재형 컴퓨터를 가능하게 하였다.

이와 같이 정보가전 제품은 점차 다양화되고 복잡해지 고 있는 추세이다. 그러나 간의 사용 RTOS는 특정 제품에의 의존도가 높고, 멀티미디어 용용과 같은 새로운 응용의 요구 분야를 지원하고 있지 않으므로 이러한 환경변화에 적응하는 것이 어렵다. 따라서 소형의 후대 정보 단말에서부터 화소비미디어기까지 다양한 종류의 정보가전 기기에 사용될 수 있는 확장성과 풍부한 기능을 갖춘 표준 실시간 OS의 개발이 필요하다.

Qplus-P는 이와같은 편재형 컴퓨터를 지원하기 위한 실시간 소프트웨어 플랫폼이다. 이에는 실시간 운영체제 커널, 애플리케이션 및 응용, 사용자 개발 도구가 포함된다. 특히 커널은 확장 가능한 구조를 제공하여 다양한 내장형 기기에 적응 가능한 이식성을 지원하며, 사용자 개발 도구는 특정 내장형 기기에서의 OS의 이식을 지원하는 개발 도구로 편리한 사용자 인터페이스를 제공한다.

본 논문에서는 Qplus-P 플랫폼의 커널과 개발도구 의 각 기능을 간략히 살펴본다.

2. Qplus-P 실시간 임베디드 운영체제 커널
Qplus-P 커널은 리눅스를 기반으로 하는 정보가전기기 를 위한 실시간 운영체제이다. 정보가전기기의 요구하는 연속 실시간성(soft realtime), 적정 관리 기능, 확장 부품 기능을 제공하며, 소형의 개인용데스크톱 시스템에서 화소비미디어기와 같은 대형 정보가전기기를 다양하게 지원하기 위 해 커널은 모듈화 된 구조를 가지고 있다. 이 모듈들은 설정 도구인 태켓 밸더를 사용하여 다양한 기기에 맞게
설정되고 적재(deployment)된다. 현재 Qplus-P 컨널은
Hestia 홍서버(Home Server), 웹패드(Web PAD), 상용
PDA인 iPAQ과 Zaurus, 상생전략의 PDA 보드인
S3C2400, SA1110 기반의 실험보드에 이식되고, 시험
및 성능 평가가 수행되었다.

허브 발생 단계

System Level Development Tool

Device Driver

< 그림 1 > Qplus-P 컨널부 구조도

Qplus-P 컨널부는 그림 1에 나타난 바와 같이 크게
Qplus-P 컨널 자체와 컨널의 설정과 디버깅을 도와주는
시스템레벨의 개발 도구로 구성된다. Qplus 컨널은 연성
실시간성 요인기능, 저전력관리 기능, 배른 부팅기능과
다양한 장치관리기능을 특별히 한다. 시스템 개발 도구는
다양한 타겟에 맞추어 컨널, 라이브러리를 포함한 모포
넌트들을 설정하고 적재를 도와주는 타켓 칩웨어 디바이
스 드라이버나 컨널 포팅시 컨널레벨의 디버깅을 도와주
는 컨널 디버거로 구성된다.

실시간 기능
Qplus-P는 표준 리눅스 컨널의 구조적인 문제를 수정
하여, 표준 리눅스 컨널이 가지고 있는 기존 결점을 우
지하며 실시간성 지원이 되는 사용자의 요구를 충족시키
고 있다. 표준 리눅스는 전통적인 유닉스의 모노리적
(monolithic)기반의 컨널이므로, 처리강(Throughput)을
증가하여, 실시간적 성능을 표시하는 응답성
(responsibility)과는 직점적인 관계다. 따라서,
Qplus 컨널은 응답성을 높여 실시간성을 지원하기 위해,
컨널 자체의 맥 메커니즘(lock mechanism)과 관련 컨널
코드를 수정하여 선택형 컨널(preemptible kernel)으로 구
성하고 있으며, 덜 복잡한 브레이크(lock break) 기법을
도입하였다. 이는 컨널 내부의 긴 루프 구간(long locked
region)으로 태스크가 진입할 시에는 응답성이 현저히
떨어지는 점을 보완하기 위하여, 긴 루프 구간안에서도 태
스크의 선택(preemption)이 필요한 경우에 선택이 일어
날 수 있도록 하는 기법이다. 또한, 고정 스케줄링 시간을
갖는 스케줄러와 스포라디적 서버(sporadic server)와 같은
실시간 스케줄러의 기능을 개발하여 컨널의 예측가능성
을 높였다.

빠른 부팅 기능
임베디드 시스템에 있어서 부팅 부팅은 주요한 이슈 중
하나이다. 우리는 ETRI 임베디드 S/W센터에서 개발중인
x86 아키텍쳐 기반의 풍기버 최근 Hestia I 상에서 빠른
부팅을 가능하게 하기 위한 연구를 수행하였다. 빠른 부팅
을 위해서는 BIOS 레벨의 최적화와 운영체제(Linux)레벨
의 최적화가 필요하다. 여기에서는 주로 BIOS레벨의 최
적화에 대해서 다루었으며, 운영체제 레벨의 최적화는 실
정적인 Target Builder를 통해 수행된다.

Hestia I은 Pentium4 2GHz와 대만 SIS의 SIS645,
SIS96 핸드북을 기반으로 한 독자 설계 보드인데 초기에는
기존의 미국의 AMI, Award사 등에서 공급하는 BIOS
개발용 및 소스코드를 사용하는 것을 고려하였다. 하지
만 비용적인 문제뿐 아니라 바이오스 초기화 시간에만
10 10 초 이상의 많은 시간이 소요되어 풍기버와 같은
임베디드 시스템에 사용하기에 너무 느리다는 문제점
이 있었다. 이에 대한 대안으로서 우리는 공개소스 BIOS
프로젝트인 LinuxBIOS를 풍기버 시스템에 적용하기로
하였으며, 결과적으로 1초 이내의 BIOS초기화 시간만이
소요되고 최종적으로 5 6초 만에 리눅스가 부팅되는
결과를 얻었다.

저전력 기능
저전력관리는 시스템이 사용되지 않을 때 소모되는 전력
을 최소화하기 위한 기능으로 배터리가 제한적인 PDA와
같은 휴대용 기기에서 필수적인 부분이다. 배터리의 전
량을 충분히 잘 보고 전력을 절약기능이 필요하다. Qplus-P
의 전력관리는 ARM 9 기계의 상생 S3C2400 reference 보드
상에 구현되어 있으며, 전력 쿼리어가 하드웨어의
디바이스 드라이버와 이를 통해 사용자의 설정에 의해 전력상태를
관리하는 daemon, 그리고 이 daemon을 위한 GUI로
구성된다.

파일 시스템
PDA나 휴대폰 같은 이동 단말에서부터 휴대비 같은 중대형 정보가전 기기에 사용되는 다양한 저장 장치를 위한 파일 시스템을 제공하는 것이 목표이며, 이동 단말에서 저장 매체로 주로 이용되는 플래시 메모리(flash memory)에 대한 플래시 파일 시스템과 휴대비 등에서 알티미다이 데이터 관리를 위한 알티미디어 파일 시스템으로 크게 구분할 수 있다.

Qplus-P 알티미디어 파일 시스템(QPMMSF)은 알티미디어 데이터를 저장하고 재생하기 용이하도록 기존의 기본적인 리눅스 파일 시스템인 EXT2를 개선하여 저장구조를 변화시키고, VFS 부분에 QoS(Service of Quality) 기능을 추가하여 알티미디어 데이터에 대한 관리를 용이하도록 만들었다. Qplus 플래시 파일 시스템(QPFFS)은 공동연구 기관인 Red Hat co와 공동 개발한 JFFS(Journaling Flash File System)를 기본으로 하여 순위별 자료 정책(Ranking Cleaning Policy, RCP)을 추출적으로 개발하였다.

3. 개발 도구

임베디드 소프트웨어의 개발에 있어 편리한 개발도구는 개발 과정을 단순화 시켜, 상품의 시장화 시간을 단축시키기 때문에 매우 중요하다. Qplus-P는 플랫폼 구축도구인 타겟빌더와 응용 개발 도구인 에스토를 제공한다. 그림 2는 임베디드 소프트웨어의 개발과정을 보여주는 설계 및 타겟 디자인을 자동화하며, 에스토는 타겟빌더를 이용해 구축된 타겟시스템에서 호스트와의 통신을 통해 원적으로 응용 프로그램의 개발을 가능하게 한다.

4. 결론

Qplus-P 실시간 임베디드 운영체제는 현재 PDA, 휴대비, 웹패드를 비롯한 다양한 편제형 기기에 탑재되었으며, 기존 리눅스가 가지는 여러 장점과 더불어 실시간 기능, 빠른부팅, 저전력 기능, 알티미디어 파일시스템, 편리한 개발환경과 같은 추가적인 기능의 제공으로 다양한 편제형 기기의 요구를 충족시킨다.

참조 문헌