시간적 추론이 적용된 위치 기반 서비스에 관한 연구

김제민
송실대학교 컴퓨터학과
kimjemins@hotmail.com, park@computer.ssu.ac.kr

The study about location based service that temporal reasoning was applied

JeMin Kim
YoungTack Park
Dept. of Computer Science, Soongsil University

요 악

체세대 정보통신 기술의 가장 중요한 패러다임으로 ‘유비쿼터스 컴퓨팅’이 새롭게 주목받고 있다. 유비쿼터스 컴퓨팅에서의 서비스 지원 시스템을 개발하기 위한 중요한 요소 중 하나는 이동체(사용자)의 사격과 이벤트의 관계를 파악하고 위치에 따른 데이터로부터 시공간 이동 패턴을 탐구하는 것이다. 본 논문에서는 유비쿼터스 환경 내에서 사용자에게 시간과 관련된 서비스를 적절히 제공하기 위해서 다음과 같은 관점에서 논의한다. 첫째, 서비스 주체에서의 사격적 추론(Temporal Reasoning)이 요구된다. 각 사용자는 각자의 취향을 가지고 있으며 이러한 사격과 밀접한 관계가 있다. 시간과 관련된 사용자의 취향에 따라 구성된 각 사용자 프로필을 기반으로 서비스 지원 시스템은 적절한 서비스를 제공할 수 있다. 둘째, 사용자의 취향을 기반으로 시간적 추론(Temporal Reasoning)이 요구된다. 기록된 사용자의 행동 패턴을 이용하여 서비스 제공을 수행한다.

1. 서론

유비쿼터스 컴퓨팅이 지향하는 “Every Computing”은 사용자가 이동하여 장소가 변하거나, 휴대 또는 사용하는 장치가 바뀌거나, 시간이 지나더라도, 지속적으로 “연결되어” 있는 작업을 수행할 수 있게 해주는 멀티모드 컴퓨팅 환경을 가능하게 한다.[1][2] 유비쿼터스 컴퓨팅을 구현하기 위한 가장 중요한 요소 중 하나는 위치 기반 서비스(Location Based Service)가 사용자에게 난편을 줄여주며 서비스 제공을 가능하게 한다.[3] 위치 기반 서비스를 개발하는데 있어 대표적인 문제 중 하나는 현재의 사격과 관련된 시공간과 사용자에게 서비스를 제공하기 위해서는 사용자의 위치 가정에 따라 다양한 방법을 사용할 수 있다. 이를 위해 사용자는 사용자의 위치 관계와 사격적 관계를 고려하여야 한다. 사격과 관련된 사용자의 취향에 따라 사용자는 사격적 관계를 최적화하여 사용자의 사격적 추론(Temporal Reasoning)이 요구된다. 기록된 사용자의 행동 패턴을 이용하여 서비스 제공을 수행한다.

2. 서비스 시나리오

유비쿼터스 컴퓨팅은 활동의 주된 점, 자동차, 회사 등의 기기에 내장된 컴퓨터로 네트워크를 통해 사용자가 특정 장소에 위치된 활동에 활용하는 것으로 볼 수 있다. 또한 어디에서든 필요한 정보를 얻을 수 있는 점을 강조하고 개인을 위한 맞춤형 서비스에 초점을 맞추고 있다. 본 논문에서는 실제 유비쿼터스 환경에서 사용자가 몸을 둔 사용자가 쉽게 이용할 수 있는 사격적 추론이 적용된 유비쿼터스 서비스에 대한 예를 간단히 시나리오 통해 설명한다.

첫 번째 시나리오는 지능형 의료 환경에서의 방문자의 구매에 앞서 특정 정보를 제공하기 위해서는 필요한 정보를 제공하기 위해서는 필요

2004년도 한국정보과학회 가을 학술발표논문집 Vol. 31, No. 2

91
3. 위치 기반 서비스 (Location Based Services)

본 논문은 중앙 집중적인 센서 네트워크 방식으로부터 위치 추적 (location tracking)이 이루어진 상황에서 유기체와 서비스의 동적 상황에 대한 사전적 상황을 추측하는 위치 기반 서비스를 기반으로 하고 있다. 기존의 위치 추적용 센서 네트워크는 BAT 시스템의 상황과 같지만 BAT기반의 시스템에서 캐드 트리기반의 경우 모바일 공간 인식 모델 방식을 취하여 상황 인지를 추정하기 위해 본 논문에서 사용한 방법은 BAT기반의 상황을 모델화하고 지식기반 서비스를 적용하여 위치 기반 상황 인지를 추정한다.

본 논문에서는 유기체와 서비스 활동 프로세스의 각 사례들에 대한 기존의 모델을 구체화하고 특정 사례들에 대한 상황을 추정하기 위함으로 사용된 모델을 구체화하기 위한 기존의 모델을 사용한다. 본 논문에서 사용한 모델은 모바일 공간의 위치 추적, 상황 인지를 통해 상황을 추정하기 위한 기반 모델로 구성한다.

여러 가게 구획 관리와 접관 사례에 관한 실제 환경에 배치되는 여러 가지 가게 (TV, 냉장고, 오도, 갑방 등등)에 대해 설명한다. 이를 위해 각 가게의 실시간 정보와 타임 정보(54시간 TV, 32시간 TV 등등) 및 위치에 따라 가능한 크기 (X,Y Size)를 정의한다. 이에 따라 위치에 따라 위치 정보와 상호 작용을 통해 마치 가게의 영역 (크기 및 데크)를 추정하기로 한다.

4. 시간적 추론

Allen, J.F.는 영소행과 시각적인 관계를 표현한 것으로 인공지능 기법을 이용한 시각적 추론을 (Temporal Reasoning)가 가능하도록 하였다. 다음 [그림 1]은 Allen이 정의한 시각적 공간과 시간 간격간의 관계를 보여준다.

instance는 하나의 사물 모델을 나타내고, interval은 보급 시간 간격을 나타낸다. 시각 간격들의 관계를 표현하기 위해서는 proper-interval라는 개념을 사용한다. proper-interval은 시작점 (start-point) 과 종료점 (end-point)이 정상 존재하며, 이 두 점이 일치해야만 성립한다. 시간 간격간의 관계는 [그림 1]과 같이 크게 3가지로 표현된다.

![그림 1 시간 간격 간의 관계](image-url)
로 한 사용자 허스트 파일 생성에 대해 설명해 보겠습니다. 본 실험
은 3명의 사용자가 유비쿼터스 서비스가 적용된 지능형 홈 환경에
서 각 20개의 상황에 대해 시뮬레이션을 실행한 후, 생성된
관계 명령어들로 바탕으로 시간적 추론 엔진의 의미 해석 방법
과 사용자 허스트 파일 생성하는 과정을 보여줍니다. 관계 명령어에
시간적 구조를 적용한 전문문장을 바탕으로 결과 시간적 추론이 적
용된 새로운 상황과 이러한 상황을 표현하는 의미 해석 방법을 얻
을 수 있습니다. 이와 같은 의미 해석 방법의 기술적 관계 명령어를
바탕으로 [그림 2]와 같은 사용자 허스트 파일이 최종적으로 추
종되었습니다.

[그림 2] 사용자 허스트 파일

7. 결론 및 향후 연구

본 논문은 유비쿼터스 환경에서의 서비스 지원 시스템을 개발하
기 위한 중요한 문제 중 하나인 이용객(사용자)의 사용자과 이
벤트의 관계를 파악하고 위치 이동 데이터로부터 시간적 이동 패턴
분석에 대한 연구를 주 목적으로 하고 있습니다. 이는 사용자에게
시간적 요소가 고려된 서비스를 제공할 수 있게 합니다. 따라서
유비쿼터스 환경 내에서 사용자에게 시간이 고려된 서비스를 적용
하여 제공하기 위해서 다음과 같은 연구를 진행하였습니다. 즉, 사용자
관련에서의 시간적 추론(Temporal Reasoning)이, 특히, 사용자
의 행동을 기록하기 위하여 시간적 추론(Temporal Reasoning)이
무의 두 연구의 결합을 통한 사용자 프로필(User Profile)의 존
재는, 즉, 각 사용자 개인에 맞는 시간적 요소가 적용된 유비
쿼터스 서비스를 제공하기 위해서는 사용자의 취향 및 제공받은
서비스들이 시간에 따라 갱신(Time Interval)별로 기록되어 있는 사용자 프로
파일이 필요하며, 이러한 사용자 프로파일을 구축하기 위해서는
시간적 추론이 필요합니다. 이를 위해 본 논문에서는 시간적 추론
엔진(Temporal Reasoning Engine) 구현에 유비쿼터스 지원
시스템받의 하나인 위치 기반 서비스 시스템에서 적용하였다.

참고문헌

research in ubiquitous computing", ACM Transactions on
Computer Human Interaction, Vol. 7, No. 1, pp. 29 ~ 58, March
2000
[3] 이준호, 박은자, "위치 기반 서비스 이용 이론 추계의
시간 미션 레이어 기반", 한국정보과학회 논문집, Vol. 29, NO. 5,
pp. 0335 ~ 0346, 2002.10
[4] James F Allen, George Ferguson, "Actions and Events in
Interval Temporal Logic", In Oliveira Stock (ed.), Spatial and
Balkrishnan,"The Cricket Location-Support System", 6th ACM
International Conference on Mobile Computing and Networking
(ACM MOBICOM), Boston, MA, August 2000
[6] Mike Addissee, Rupert Curwen, Steve Hodges, Joe Newman,
Pete Steiggles, Andy Ward, Andy Hopper, "Implementing a Sentinel
Computing System", IEEE Computer, August 2001
[7] 우희광, "제네바대학교 "자차네 SUV용
연구센터", 부산대학교 "전자통신정보소프트 연구센터", 한국정보과학회, VOL. 22, NO. 1, pp. 0064 ~ 067, 2004.01

[표 5] 의미 해석 블록

5. 실험

본 논문이 제안하는 시간적 추론이 적용된 위치 기반 서비스의
실험 가능성을 평가하기위해 위치 기반 서비스에 연동되도록 구현
된 시간적 추론 엔진(Temporal Reasoning Engine)과 이를 바탕으로

[표 1] Relation Operation

<table>
<thead>
<tr>
<th>stay(on,bed,park,t1,t6)</th>
<th>stay(on,bed,kim,t1,t6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>stay(front,TV,park,t8,t10)</td>
<td>stay(front,TV,kim,t8,t10)</td>
</tr>
</tbody>
</table>

이런 작업 오모리에 존재하는 모든 사용자 시각적 관계를 나타내는
사용자과 이러한 사용자들의 내면과 연결되는 설치물을 연결하여 복잡한
사용자 간의 관계를 나타내는 데 사용될 수 있습니다. 이는 각 서비스는 여러
사용자와 어떠한 객제와 어떠한 관계를 가지는지를 스트릭 편집으로 자료화시
이렇게 생성된 데이터는 위치 기반 서비스 시스템에 사용자에게
시간과 관련된 서비스를 제공함을 목적으로 사용자 프로필(User Profile)의 존
재다, 즉, 각 사용자 개인에 맞는 시간적 요소가 적용된 유비
쿼터스 서비스를 제공하기 위해서는 사용자의 취향 및 제공받은
서비스들이 시간에 따라 갱신(Time Interval)별로 기록되어 있는 사용자 프로
파일이 필요하며, 이러한 사용자 프로파일을 구축하기 위해서는
시간적 추론이 필요합니다. 이를 위해 본 논문에서는 시간적 추론
엔진(Temporal Reasoning Engine) 구현에 유비쿼터스 지원
시스템받의 하나인 위치 기반 서비스 시스템에서 적용하였다.