Fast Handovers for Mobile IPv6 구현 및 성능 평가

김용성, 포항공과대학교 컴퓨터공학과 
{freeks, ddal, yjsuh}@postech.ac.kr

An Implementation and Performance Evaluations of Fast Handovers for Mobile IPv6

Yong-Sung Kim, Dong-Hee Kwon, Young-Joo Suh
Dept. of Computer Science and Engineering, Pohang University of Science and Technology

요 약

1. 서론

2. Fast Handovers for Mobile IPv6 (FMIPv6)
FMIPv6는 MN에 대한 해부역을 가진 CoA에 대해서 DAD 과정을 미리 수행함으로써, MN의 해부역을 수행하는 시간을 줄이게 하여 제안된 프로토콜이다. FMIPv6 프로토콜은 MN를 해당 AR (oAR)에 Route Solicitation for Proxy (RtSOLPr) 메시지를 보낼 때 Proxy Router Advertisement (PrRTAdv) 메시지를 받음으로써, MN의 해부역한 new AR (nAR)를 L2/L3 매핑 정보를 알게 된다. MN은 이 매핑 정보를 바탕으로 nAR에서 설정한 new CoA (nCoA)를 생성한 후 Fast Binding Update (FBU) 메시지에 답하여 oAR에게 전송하게 된다. 이 FBU 메시지는 oAR의 new CoA (nCoA)와 nCoA를 바인딩으로써, oAR의 MN의 nCoA로 항하는 데이터를 nCoA로 터널링과 하기 위해서 사용한다. 이러한 터널링을 통해 해부역 번호 시간동안 MN에서 발생할 수 있는 데이터 손실을 최소화하기 위한 선형 터널링과 사용함으로써 MN의 데이터 전송을 개선하기 위한 것이 되는다.
3.1 헌드오버 지원 시간 비교

헌드오버 지원 시간은 L2 헌드오버 지원 시간과 L3 헌드오버 지원 시간으로 구분될 수 있다. L2 헌드오버 지원 시간은 네트워크 스키마를 설정하는 시간(배달, IEEE 802.11의 경우 11개 총 13개의 채널을 스캔하는 시간), 해당 AP와 인증을 하기위해 소요되는 시간, 그리고 해당 AP와 re-association를 하는 시간으로 구성된다. L3 헌드오버 지원 시간은 MN이 다른 네트워크로 헌드오버를 했다는 것을 아는 걸리는 시간, DAD를 수행하는 시간, HA의 binding 정보를 생성하는데 걸리는 시간으로 구성된다. 표 1, 2, 3에서 알 수 있다. L2 헌드오버 지원 시간은 206ms~518ms 사이의 값을 가리키며, 5번의 실험결과 대략 500ms 정도의 시간이 발생한다는 것을 알 수 있다.

표 1 MIPv6의 헌드오버 지원 시간

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>504</td>
<td>457</td>
<td>456</td>
<td>504</td>
<td>510</td>
</tr>
<tr>
<td>L3</td>
<td>1154</td>
<td>1404</td>
<td>3174</td>
<td>2417</td>
<td>2241</td>
</tr>
<tr>
<td>통계</td>
<td>1685</td>
<td>1861</td>
<td>3632</td>
<td>2921</td>
<td>2721</td>
</tr>
</tbody>
</table>

그와 반면, 각 프로토콜의 L3 헌드오버 지원 시간은 큰 차이를 보이지 않는다. 이것은 MIPv6의 경우 L2 헌드오버 후 수행해야 할 L3 헌드오버 지원 시간이 대략 2s~3s 시간이 소요되지만, predictive MIPv6의 경우 L3 헌드오버 지원 시간을 줄이기 위해 DAD를 미리 수행하기 때문에 L3 헌드오버 지원 시간이 MIPv6와는 달리 1초 이내의 값을 가지는 것이다. 그러나, reactive MIPv6의 경우 MN이 헌드오버 후에 DAD를 수행하기 때문에에 predictive MIPv6와 달리 L3 헌드오버 지원 시간이 길다는 것을 표 2에서 살펴볼 수 있다.

표 2 Reactive MIPv6의 헌드오버 지원 시간

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 헌드오버 지원 시간</td>
<td>447ms</td>
<td>266ms</td>
<td>518ms</td>
<td>281ms</td>
<td>510ms</td>
</tr>
<tr>
<td>L3 헌드오버 지원 시간</td>
<td>169ms</td>
<td>271ms</td>
<td>170ms</td>
<td>1847ms</td>
<td>1991ms</td>
</tr>
<tr>
<td>통계</td>
<td>2390ms</td>
<td>2349ms</td>
<td>2517ms</td>
<td>2530ms</td>
<td>2385ms</td>
</tr>
<tr>
<td>프로토콜의 대응시간의 평균</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

표 3 Predictive MIPv6의 헌드오버 지원 시간

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 헌드오버 지원 시간</td>
<td>511ms</td>
<td>296ms</td>
<td>281ms</td>
<td>511ms</td>
<td>408.8ms</td>
</tr>
<tr>
<td>L3 헌드오버 지원 시간</td>
<td>203ms</td>
<td>277ms</td>
<td>291ms</td>
<td>371ms</td>
<td>281ms</td>
</tr>
<tr>
<td>통계</td>
<td>279ms</td>
<td>417ms</td>
<td>809ms</td>
<td>654ms</td>
<td>792ms</td>
</tr>
<tr>
<td>프로토콜의 대응시간의 평균</td>
<td>52</td>
<td>57</td>
<td>34</td>
<td>45</td>
<td>47</td>
</tr>
</tbody>
</table>

그 외, reactive와 predictive MIPv6의 aOR에서 포워딩되는 데이터 개수가 큰 차이를 보이는 것을 알 수 있다. 이것은 두 모
드에 따라 oAR이 터널링을 시작하게 되는 시점이 늘어진 다. 즉, predictive FMIPv6의 경우 MN이 핸드오버 이전에 터널링 서비스를 시작하게 되지만, reactive의 경우 MN이 핸드오버 후 DAD 수행과정을 거쳐서 VIF의 존재와 oAR에게 전송을 하게 되므로, CN에게 VIF 메시지가 나오는 시점과 거의 동등하게 된다. 따라서, reactive FMIPv6의 경우 predictive FMIPv6와는 달리 CN에서 바로 데이터를 전송받게 된다. 이러한 이유로 predictive FMIPv6가 reactive FMIPv6보다 L3 핸드오버 시간이 적다는 것을 포2와 3을 통해 쉽게 알 수 있다. 또한, predictive FMIPv6의 경우 oAR의 터널링 서비스를 이용하여 MIp6와 reactive FMIPv6 보다 데이터의 연속 시간 및 손실률을 줄일 수 있으며, 핸드오버 성능에 영향을 미친다고 한다.

3.2 UDP 연결에서의 핸드오버 성능 비교

그림 3, 4 및 5는 MN과 CN사이의 UDP 연결을 통해 각 UDP 데이터에 대한 중단 시간 및 데이터 전송의 결과를 비교하였다. 그림 3에서 보는 바와 같이 FMIPv6에서는 대략 4초간 79개의 데이터 손실이 발생한다는 것을 알 수 있다. 이것은 앞서 살펴본 MIp6의 핸드오버 시간에 따라 발생하는 데이터 손실이라 할 수 있다. Reactive FMIPv6의 경우도 MIp6와 비슷한 데이터 손실을 경향하게 되는데, MIp6보다는 많은 데이터 손실이 발생한다는 것을 그림 4를 통해 알 수 있다.

![그림 3 UDP 연결시 MIp6 핸드오버 성능](image)

![그림 4 UDP 연결시 reactive FMIPv6 핸드오버 성능](image)

![그림 5 UDP 연결시 predictive FMIPv6 핸드오버 성능](image)

4. 결론

본 논문에서는 실제 테스트베드 네트워크를 구축하여 MIp6와 FMIPv6의 핸드오버 성능을 평가하였다. 또한, FMIPv6의 두 가지 모드 즉, reactive와 predictive 모드를 구현함으로써, 핸드오버 시간 및 UDP 연결에 대한 평가를 수행하였다. 실험 결과를 통해, L3 핸드오버 시간에 비해 L2 핸드오버 시간이 크게 차이가 나는 것을 확인하였다. MIp6에서는 핸드오버 시간이 대략 1초로 나타났다. 이는 시간 간의 데이터 손서를 보고자 하는 사용자에게는 만족스럽지 못한 결과를 초래할 수 있다. Reactive FMIPv6의 경우, MIp6와 비교하여 L3 핸드오버 시간을 줄임으로써, 핸드오버 성능을 향상시켰지만, 2.5초라는 핸드오버 시간은 효율적인 핸드오버 성능을 사용자에게 제공하기에는 부족하다. Predictive FMIPv6에서는 핸드오버 시간 및 데이터 손실 측면에서 가장 좋은 핸드오버 성능을 보여주었다. 또한, 이 역시 시간 간의 테트릭을 지원하기에에는 아직 부족할 수 있는 부분이다.

5. 참고 문헌