전송률에 기반한 IEEE 802.11b 에너지 모델

김태현○ 차호정
연세대학교 컴퓨터과학
thkim,hjcha@cs.yonsei.ac.kr

An Energy Model for IEEE 802.11b based on Transmission Rate

Taehyun Kim○ Højung Cha
Dept. of Computer Science, Yonsei University

요약
본 논문은 CAM(Constand Awake Mode), 및 PSM(Power Saving Mode)을 지원하는 IEEE 802.11b[1] Infrastructure 환경에서 전송 프로토콜이 이동통신 WNIC(Wireless Network Interface Card) 에너지 소비에 미치는 영향을 분석하고 단위 시간 동안 전송되는 데이터 양에 기반한 IEEE 802.11b WNIC 에너지 모델을 제안한다. 제안하는 에너지 모델은 IEEE 802.11b 환경에서 CAM 및 PSM 모드를 사용할 때, 실제 측정한 값을 기반으로 설명하였다. 제안된 에너지 모델은 설명을 통한 정확성을 검증하고, IEEE 802.11b를 기반으로 한 주전력 통신 관련 연구에서 시뮬레이션 시 사용 가능한 에너지 모델임을 밝혔다.

1. 서론

WNIC의 에너지 소비를 감소시키기 위한 기존의 많은 연구들은 제한된 저전력 통신 기법을 주장하기 위한 방법으로 시뮬레이션을 사용하였다. 시뮬레이션은 WNIC의 에너지 소비를 측정하기 위한 방법으로 에너지 모델을 적용한다. 따라서 시뮬레이션 시 사용되는 에너지 모델은 제안된 저전력 기법의 성능 평가를 위해 WNIC의 에너지 소비 특성을 정확하게 반영할 수 있어야 한다.

이와 같이 WNIC 에너지 소비를 분석한 기존의 연구들은

2. 전송률에 기반한 WNIC 에너지 모델

다음은 IEEE 802.11b Infrastructure 네트워크 환경에서 단위 시간 동안 흐름 소비되는 WNIC 에너지 모델에 대해 기술한다. 이를 위하여 통신 시 단위 시간 동안 처리되는 데이터 양이 이동통신 WNIC의 에너지 소비에 미치는 영향을 살펴보고, 전송률에 비례하여 평균적으로 소비되는 TCP 및 UDP IEEE 802.11b WNIC 에너지 모델을 기술한다.

본 논문은 실험을 통하여 IEEE 802.11b WNIC 에너지 소비는 단위 시간(1Sec) 동안 전송되는 데이터 양의 전송률에 비례함을 밝히고 WNIC가 소비하는 에너지를 분석하여 단위 시간 동안 평균적으로 WNIC가 소비하는 TCP 및 UDP 에너지 모델을 제시한다.

그림 1은 5Mbytes의 데이터를 FTP를 이용하여 전송할 때 이동기 기의 전송률 및 WNIC의 전압 변화를 측정한 결과이다. 실험은 IBM Thinkpad T22 Laptop을 이용하여 리눅스 커널 2.4.22를 기반으로 Cisco Aironet PCM 352 802.11b WNIC를 사용하였고, PCCextend 100 16-bit extender Card와 Fluke 123 Industrial Scope
그림 1: 전송률과 WINC 소비 에너지 관계

을 이용하여 에너지를 측정하였다. 전송률은 Tcpdump와 Tcptrace를 사용하여 측정한 결과이다. 그림 1에서 이동기의 WINC 에너지 소비는 이동기에서 단위 시간 동안 전송되는 데이터 양이 증가하게 되면 전송 중 WINC의 Idle 상태는 감소하게 되고 Active 상태가 증가하게 되어 에너지 소비 또한 비례적으로 증가하게 된다. 위 실험을 통하여 본 연구는 WINC의 에너지 소비는 전송률과 관계가 있으며 전송률에 관한 식으로 표현가능함을 확인하였다. 본 논문은 이동기의 WINC 에너지 소비는 전송률에 비례한다는 가정하에 다음과 같은 전송률에 관한 기본 식으로 WINC 에너지 모델을 제시한다.

\[E(nW) = (C_w \times \text{throughput} + C_{\text{idle,mc}}) \times \text{sec}(1) \]

E는 데이터를 전송하는 동안 소비되는 WINC의 에너지를 의미한다. 에너지는 1초 동안 전송되는 평균 백트 수에 비례하여 전송률 throughput에 관한 식으로 나타낼 수 있다. 이에 관한 파라미터로 C_w은 WINC 상수, 그리고 throughput은 1초 동안 처리되는 평균 Kbytes 수를 의미한다. 마지막으로 C_{\text{idle,mc}}는 throughput과 상관 없이 항상 WINC에서 소비되는 기본 에너지를 나타내는 상수이다. 본 논문은 전송률에 따라 소비되는 WINC 에너지 소비를 측정하기 위해 다음과 같은 환경에서 실험을 수행하였다. compaq preavrio 1700과 일반 터보탑을 이용하였으며 두 호스트 사이에 AP를 사용하여 유선 링크(100Mbit/s)와 무선 링크(11Mbit/s)를 불러하였다. 이동기는 리눅스 커널 2.4.22를 기반으로 Cisco Airnet PCMC 352 802.11b WINC를 사용하였다. TCP의 경우 FTP를 사용하였으며 전송률 50-650(KB/Byte/sec)로 나누어 수신에서 최대 전송률을 조절하였고, UDP의 경우 Mgen[5]를 사용하여 전송률을 조정하여 측정하였다. 몰론, 동일한 수신에서 5MBytes의 데이터 동안 소비되는 WINC의 평균 에너지를 측정하였다.

그림 2는 각 전송률에 따라 TCP의 CAM, PSD 모드를 대기 소비되는 WINC 에너지를 측정한 것이다. TCP PSD 모드에서 데이터를 전송하고 ACK를 기다리는 동안 WINC는 Sleep 모드로 전환되어 IEEE 802.11b에서 기존 값으로 설정된 100ms listen Interval 동안 Sleep 상태에서 대기한 후 ACK를 수신하게 된다. 이는 CAM보다 전송률을 감소시키는 원인을 될 뿐만 아니라 WINC의 에너지 소비직도 영향을 미치게 된다. 따라서 PSD는 CAM보다는 단위 시간 동안 낮은 에너지를 소비하지만 동적 지연이 발생하는 것을 알 수 있다.

그림 3은 UDP에서 WINC의 에너지 소비 변화

수 있다. 그림 3은 UDP의 CAM 및 PSD 모드에서 전송률에 따른 WINC 에너지 소비를 측정한 것이다. UDP PSD 모드에서는 단위 시간 동안 데이터를 전송하는 양에 따라 WINC가 Sleep 모드로 전환되지 않는 구간과 Sleep 모드에서 대기하는 구간으로 나누어 에너지 소비 경향을 나타내게 된다. 즉 전송률이 높은 구간에서는 대기 속도로 데이터를 전송하기 때문에 항상 전송한 데이터에 존재하게 되어 WINC가 Sleep 모드로 전환되지 않는다. 하지만 낮은 전송률에서는 WINC는 다음 전송할 데이터가 발생할 때까지 Stay 모드로 전환하게 된다. 이 두 경우 모두 사용된 전송률 범위에서는 WINC가 Sleep으로 전환되는 중간에 전송할 데이터가 발생하기 때문에 WINC는 완전히 Stay 모드로 전환되지 못하는 상황이 발생하게 된다. UDP PSD 모드에서 데이터를 수신할 때는 전송할 메시지에 따라 Sleep으로 전환되지 못하는 구간과 Sleep으로 전환하는 구간 1가지의 소비 경향을 나타내게 된다. 전송률이 높은 상황에서는 전송과 마찰가지로 WINC는 Sleep으로 전환되지 못하게 된다. 하지만 일반 Sleep으로 전환하게 되면 전송할 데이터는 존재하지 않기 때문에 기존 값으로 설정된 100ms Listen Interval로 인해 WINC는 대기하고 있는 100ms를 대기해야 한다. 또한, 수신은 전송할 때처럼 Sleep도 동안 전환하는 중간에 다시 Wake up 하는 구간은 전송할 데이터를 가지고 있지 않기 때문에 발생하지 않게 된다. 따라서, UDP PSD 모드에서 데이터를 수신할 때는 2가지 에너지 모델을 나타내게 된다.

본 논문은 현재 시점으로 WINC 소비 에너지 를 나타내는 것은 불가능하며 시간과 단위 시간 동안 처리하는 데이터 양을 함께 고려해야 정확한 WINC 에너지 소비 경향을 나타낼 수 있는 것을 확인하였다. 또한, 위 실험 결과에서 알 수 있듯이 WINC의 에너지 소비는 전송률에 비례함이 확인되었다. 위 실험 결과를 이용하여 심화 연구를 이뤄지는 에너지 모델의 각 파라미터 C_w, 그리고 C_{\text{idle,mc}}의 값을 산출하여 표 1과 2에 제시한다.
본 논문은 제안하는 에너지 모델이 실제 응용 프로그램을 수행할 시 이동기기의 WNIC 에너지 소비 특성을 반영할 수 있는 지 여부를 확인하기 위해 다음과 같은 실험을 수행하였다. TCP의 경우 HTTP와 FTP 프로토콜을 사용하여 5MBytes(Packet size : 1448bytes)의 데이터를 전송하고 수신하였다. UDP의 경우 Quicktime Player를 사용하여 스틸림 서비스를 이용할 때 소비되는 이동기기의 WNIC 에너지를 측정하였다. 데이터 전송 비율은 각각 125Kbit/sec, 50Kbit/sec, 1Mbit/sec 그리고 5Mbit/sec으로 나누어 측정하였다. 10초 동안 서비스를 받은 후 이동기기 WNIC에서 1초 동안 평균 소비되는 에너지를 측정하여 본 논문에서 제시하는 에너지 모델을 사용한 결과 없고 비교 결과하였다.

그림 4 TAMP의 경우 에너지 모델은 측정치와 오차 25% 미만으로 WNIC의 에너지 소비 결과를 계산할 수 있다. 이는 비교적 Idle 상태 및 Active 상태의 전량 변화의 폭이 작아 WNIC의 상태변화를 비교적 정확하게 반영할 수 있음을 의미한다. PSM의 경우는 WNIC의 Sleep 상태 및 Active 상태의 전량 변화의 폭이 커서 상태 변화 오버헤드와 측정 장치의 오차로 인해 5%의 오차범위로 갔다. 하지만, 기존에 이론적으로 에너지 모델을 제시한 연구들과 비교해서 TAMP의 경우에도 실제 WNIC의 에너지 소비 변화 경향을 반영할 수 있다는 점에서 본 논문에서 제안한 에너지 모델을 사용하는 것이 저전력 통신의 성능 평가를 위해서는 바람직하다고 할 수 있다.

그림 5는 UDP의 측정 및 PSM 모드에서 에너지 소비 측정결과와 계산된 모델의 계산 결과를 나타낸 것이다. TCP와는 다르게 규칙적으로 트래픽이 발생됨으로 WNIC 소비 경향이 TCP와 다르게 정확하게 계산된 결과로 갔다. 따라서, 그림 7은 각각 TCP와 PSM의 경우 측정 및 계산 결과가 일치하였다. TCP의 경우 PSM의 경우 기존의 기준 이상의 결과를 나타낸 결과를 보았다. UDP의 경우 메시지 전송의 변화가 크고 측정 장치의 오차로 인해서 PSM의 경우 보다 많은 오차 6%의 범위를 가질 수 있었다. 하지만, UDP의 규칙적인 트래픽 발생으로 계산된 UDP에서의 에너지 소비 경향은 TCP보다는 작은 오차 범위 내에서 WNIC의 에너지 소비 경향을 반영할 수 있었다.

3. 실험 및 분석
본 논문은 제안하는 에너지 모델이 실제 응용 프로그램을 수행할 시 이동기기의 WNIC 에너지 소비 특성을 반영할 수 있는 지 여부를 확인하기 위해 다음과 같은 실험을 수행하였다. TCP의 경우 HTTP와 FTP 프로토콜을 사용하여 5MBytes의 데이터를 전송하고 수신하였다. UDP의 경우 Quicktime Player를 사용하여 스틸림 서비스를 이용할 때 소비되는 이동기기의 WNIC 에너지를 측정하였다. 데이터 전송 비율은 각각 125Kbit/sec, 50Kbit/sec, 1Mbit/sec 그리고 5Mbit/sec으로 나누어 결정하였다. 10초 동안 서비스를 받은 후 이동기기 WNIC에서 1초 동안 평균 소비되는 에너지를 측정하여 본 논문에서 제시하는 에너지 모델을 사용한 결과 없고 비교 결과하였다.

그림 4 TAMP의 경우 에너지 모델은 측정치와 오차 25% 미만으로 WNIC의 에너지 소비 결과를 계산할 수 있다. 이는 비교적 Idle 상태 및 Active 상태의 전량 변화의 폭이 작아 WNIC의 상태변화를 비교적 정확하게 반영할 수 있음을 의미한다. PSM의 경우는 WNIC의 Sleep 상태 및 Active 상태의 전량 변화의 폭이 커서 상태 변화 오버헤드와 측정 장치의 오차로 인해 5%의 오차범위로 갔다. 하지만, 기존에 이론적으로 에너지 모델을 제시한 연구들에게 비교해서 TAMP의 경우에도 실제 WNIC의 에너지 소비 변화 경향을 반영할 수 있다는 점에서 본 논문에서 제안한 에너지 모델을 사용하는 것이 저전력 통신의 성능 평가를 위해서는 바람직하다고 할 수 있다.

그림 5는 UDP의 측정 및 PSM 모드에서 에너지 소비 측정결과와 계산된 모델의 계산 결과를 나타내었다. TCP와는 다르게 규칙적으로 트래픽이 발생됨으로 WNIC 소비 경향이 TCP와 다르게 정확하게 계산되었다. 따라서, 그림 7은 각각 TCP와 PSM의 경우 측정 및 계산 결과가 일치하였다. TCP의 경우 PSM의 경우 기존의 기준 이상의 결과를 나타낸 결과를 보았다. UDP의 경우 메시지 전송의 변화가 크고 측정 장치의 오차로 인해서 PSM의 경우 보다 많은 오차 6%의 범위를 가질 수 있었다. 하지만, UDP의 규칙적인 트래픽 발생으로 계산된 UDP에서의 에너지 소비 경향은 TCP보다는 작은 오차 범위 내에서 WNIC의 에너지 소비 경향을 반영할 수 있었다.