중앙부 관리 영전중축 거동을 고려한 내부단 폐강실의 뒤따라리

백민석*, 이시연**, 양보석***, 최성철***, 이재근****

Control of Internal Packing Seal Clearances Considering for Shaft Behavior During Steam Turbine Operation

Min-Sik Pack, Si-Yeon Lee, Bo-Suk Yang, Sung-Choul Choi, Jae-Geun Lee

Key Words: Tandem Compound Turbine(측면연결 대청), Internal Clearances(내부등계), Shaft Behavior(축 거동), Journal Bearing(댐널 베어링), Steam Whirl(스팀 웨릴), Labyrinth Packing(레버런스 밀링), Blade Tip Clearance(깃틀 뒤따라리)

Abstract

This paper presents the characteristics of internal clearances for the interstage of blades and shaft gland seals on the steam turbine which are installed in tandem compound. Internal clearances was changed when the rotor turned in the cylindrical sleeve bearing due to the generation of oil film wedge. This presented concern is very useful to prevent the rubbing damage of seal edge between the fixed and moving parts in steam turbine due to the misalignment at the rotating and stationary parts. This method is applied for the unbalanced clearances distribution to the left and right sides in the turbine casing. A considerable amount of unbalanced clearances distribution trend is determined according to the rotating speed of rotor, size and type of journal bearing, oil viscosity, surface roughness of bearing and shaft, oil temperature, oil pressure and bearing load.

1. 서론

국내 연괴기 및 화력발전소의 증기터빈은 타고
연결터빈(tandem compound turbine)형식이 사용
되고 있다. 수평형 회전기로 분류되는 이 형식은
터빈축 밀봉부와 캐이상 내부 각 단(stage)의 풀
세(clearance) 크기가 터빈 효율에 크게 영향을 미
치며, 이에 대해 터빈 동생계산 분야에서 많은
연구가 수행되어왔다(1) 기본적으로는 좌우 풀세
가 균등하게 잘 조정되어 실리된다. 그러나 캐이
상 내부 풀세가 터빈 운전 중에는 상하 및 좌우
풀세의 인주방향 중 특히 좌우풀세에서 뒤따라리
이루게 되며, 회전방향에 따라 특정 방향 풀세의
변화를 수반하게 되는 것이 수년간의 정비 경험
을 통하여 확인되었다.(2) 이러한 사실은 터빈
Rotor 회전에 따른 내부 단(internal stage)의 스팀 웨
(turbine whirl) 현상과 원통 저널 베어링의 유유팔
기(oil wedge) 작용에 의해 좌측 중심의 좌우 거동
의 변화를 초래하는 것으로 알려져 있다.

심각한 내부 풀세의 변화는 매우 중요한 척
급 및 관리되어야하며 증기터빈 운전 중의 전동
이상은 물론 터빈 효율과 내, 외부 증기누수에
까지 영향을 미치게 된다. 이론적으로 터빈의 고
정체인 캐이상 정방의 기준은 정상운전 중 터빈
회전부와 고정부의 기하학적 중심이 일치하여,
상하 좌우 방향에서의 풀세가 동일한 위치이다.
즉, 변경방향의 풀세 혼소로 인한 기계적 마찰
(rubbing)이 없을 뿐만 아니라, 풀세 좌우로 인한
중기의 누수들이 없는 위치가 될 것이다. 그러나
실제로는 터빈의 기동, 정상운전 및 정기과정에
서 발생하는 축 전동, 캐이상 전동, 열팽창의 차
이, 과도상태에서 회전축 중심선(center line)의 변
화 등 터빈의 동특성과 여러 가지 운전 여건의 변화로 인하여 어느 정도의 기계적 마찰(slight rubbing)과 증기 누설성이 발생하는 것이 현실이다. 그러므로 터빈 제작사들은 마찰과 누설문제를 최 소화하기 위한 가변 패킹(retractable packing) 등 증기 밀봉계통(sealing system)에 관한 기술적 연구를 수행하고 있다.

따라서 이러한 현상을 고려하여 터빈정비 기법으로 내부 단의 좌우 트레 조정 시기에 미리 인경량의 좌우 트레를 주어 인위적으로 오일선(misalignment)시킴으로써 앞서 언급한 유학 배기에 따른 좌우 불평형에 의한 운전 중의 내부단의 좌우 트레 변화로 인한 심각한 마찰 손상을 피할 수 있다. 이러한 개념의 경향적 정비기법이 적용되기 시작한 상황에서 특허, 레버린스 패킹(labyrinth packing)의 관리상의 주안점을 일부로 기술한다. 이 내용은 수평형 직렬연결 발전용 증기터빈의 좌우 물세분포를 연구하여 마찰 손상을 최소화하기 위한 트레 축정 및 조정 방법에 대하여 정비관리 측면에서 실제 적용 경험을 도대로 기술하였다.

2. 레버린스 패킹의 구조적 특성

본 연구에서는 발전용 증기터빈에 사용되는 비 접촉식 밀봉장치 중 레버린스 패킹에서의 품새 적용기술을 결정하기 위해 증기터빈 좌우 밀봉 체통과 내부단 격판(diaphragm)과 좌측에서 주로 채택하고 있는 밀봉장치의 정비경험을 기준으로 기술하였다.

회전축 밀봉에 사용되므로 환경 구조를 태하 고, 일반적인 명칭은 Labyrinth Seal이며, Packing Ring, Brush Seal, Retractable Packing, Labyrinth Packing, Seal Ring, Seal Segment 등으로도 통용되 나. Tight Seal은 스프링 케이싱이나 측에 부착된 Seal Strip 형식으로 접촉 시 마찰이 섬세하고 있는 형식이며 주로 고정형이다. 선체 부위에 따라 회전축 축 감도 고온에 섬세한 회전체 고 정체인 Gland Box 격판 등에 설치되는 고정형으 로 분류되며, 가동징 측면에 설치되는 Blade Tip Seal도 포함된다.

Fig. 1 Internal clearances on turbine inter stage

반방향 품새는 기준치보다 작은 품새는 채용하지 않으며 반방향이 큰 반방터빈 또는 저압단 터빈일수록, 반방향 품새의 기준치 초과는 터 빈 효율의 저하와 직결된다. 터빈 내부 단 가동짓(moving blade)과 정지짓(stationary blade) 사이의 품새는 설계 기준치의 2배 정도까지 품새가 초과되면 터빈 효율은 수 %까지 저하되는 것으로 알려져 있다. 내부 품새는 터빈 효율과 안전운전 여유를 고려하여 결정되어야 하며, 설계의 정비현장에서는 설계치보다 작게 하지 않고, 설계치와 같거나 다소 크게 유지하여 미소한 효율 향상보다는 기기 및 부품의 수명과 안전운전에 증점을 두 고 정비 및 관리된다.
3. 터빈 내부 틴새의 분포 특성

3.1 레버장스 패킹의 조립 틴새 적용 기준

터빈 제작사별 틴새 분포는 좌우 틴새가 가가 동일하게 설계되었다. 상하 및 좌우 틴새는 높은 형식별 운전 동정성에 따라 제작사별로 균등하게, 상하 틴새는 균등 또는 상부를 하부보다 약 30% 정도 크게 설계하고 있다. 그리고 좌우 틴새는 각 제작사 모두 좌우 틴새 크기를 동일하게 설계한다.

3.2 유막 셰이작용에 의한 측 중심의 이동량

축이 반시계 방향으로 회전할 때, 측 중심의 이동 특성은 각각각(altitude angle) 또는 수평각 (angle of convergence) Φ 와 편심(eccentricity) e에 의해 결정된다. 따라서 좌우 이동량은 $\sin \Phi$ 에 편심을 곱한 값으로 쉽게 산출되고, 이 값은 측 회전에 의한 측의 무량상(lifting)에 따라 결정된다.

3.3 측 중심의 이동량에 영향을 미치는 인자

유막 셰이작용에 의한 측 중심의 이동량은 회전속도, 베어링의 형상 및 지수, 운활유의 유방, 점도, 은도 및 알리그베어링 표면의 거칠기 및 측 하중, 측 및 베어링의 진행도 등에 의해 결정된다.

Fig. 6는 직경 4in(=100 mm) 측이 시계방향으로 회전하는 경우, 회전수의 증가와 더불어 측의 무량상 및 측의 중심이 좌측으로 이동함을 보여준다.

3.4 실 분(fillet)의 널셈(re-knife edging) 영향

터빈 측 중심 이동을 고려하여 케이싱 정렬시
3.5 축 중심 편차에 따른 스템 클의 영향

단순한 바여링 저지부의 축 정렬 변화에 의한 영향만이 아니고, 부하와 함께 변화하는 로터의 미지는 작용력을 고려할 수 있다. 12) 반시계방향으로 회전하는 축의 이동에 대한 가능성이 가장 큰 원인으로 트림링과 결합부의 동심도 불량이다. 증기력(steam force)으로도 불리는 이 현상은 남겨 외주의 radial spill strip의 토마래 Fig. 7과 같이 큰 힘에서 트림링의 중심과 노출한 중심이 겹치지 않도록 조립 또는 운전되어지면 토마래가 좁고 중기 누수가 적은 우측 상부에서는 출력이 크게 높아짐으로써 트림링의 좌측 하부에서는 출력이 작게 되기 때문에 로터의 회전 토크 이외에
\[(F + dF) = 2dF \] 만큼의 외력이 우측 상부 방향으로 작용하여 바이어링의 축 중심 이동을 일으키게 된다.

3.6 토마래분포 편차에 따른 바이어링 안정성 분석

로터를 단순화하여 축 강성(stiffness)가 바이어링 강성의 비율 계산함으로써 개략적인 로터의 안정성(stability)을 추정할 수 있다. 안정성의 추정에는 다음과 같이 몇 가지 동적 변수들만 단순화하여 얻어진다. 18)

- 바이어링 강성 비대칭성: \(A = K_s/K_a \)
- 위험속도비: \(n = N_s/N_a \)
- 강성을: \(K = 2K_s/K_a \)
- 감쇠비: \(D = 3732 C_s/(N_s N_a) (1 + K) \)
- 중폭(확대계수) \(A_F = (1 + K(1 + D^2))D \)
- 바이어링 안정도 인자: \(S = (4K)(1 - A) \)

여기서, \(K_s, K_a \): 바이어링의 수직 및 수평강성(N/m), \(N_s \): 운전속도(rpm), \(N_a \): 위험속도(rpm), \(K_s \): 바이어링 강성(N/m), \(K_a \): 축 강성(N/m), \(C_s \): 바이어링 감쇠(N/s/m), \(W_{ac} \) 모입 중량(N). 이 값만의 동적 변수들에 대한 설계의 일반적인 지침으로는 다음과 같다.

- 위험속도비 \(n \)는 2 이하로 한다.
- 중폭계수 \(A_F \)는 5 이하로 한다.
- 감쇠비 \(K \)는 2 이하로 한다.
- 바이어링 안정도 인자 \(S \)는 0.8 보다 커야한다.
- 바이어링 투비에 대한 이동은 \(K_s, K_a \)에 \(C_s \)가 일정하지만 바이어링 안정성을 불변.
- 운전속도와 위험속도의 변화로 인한 축의 안정성은 불변이며 케이싱의 이동에 대한 모드 증폭의 변화는 미소하므로 무시 가능하다.
- 바이어링 이동이 아닌 케이싱 이동으로는 축 및 바이어링의 안정성에 영향을 주지 않는 것을 확인할 수 있다.

<table>
<thead>
<tr>
<th>Side clearances inter stage (as found)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>Diff</td>
</tr>
</tbody>
</table>

Fig. 8 Clearances in the turbine casing (As Found)
따라서 고정체와 회전체 사이의 좌우 틈새 분포 편차를 적용하여 조립함으로써 안정상태 영향을 미치지 않고 밸런스 실 달란부의 마찰 상태를 감소하도록 개선함 수 있다. 그리고 증기력의 방출을 우도함으로써 측관 안전성이 더욱 향상되어지는 것을 정비 후 운전상태에 검점을 통해 확인하였다.

3.8 케이싱 내부 밀봉 단부 틈새

Fig. 8은 시계반향으로 회전하는 경이 20 in 인 베어링 내의 측의 이동량을 고려하여 조립된 케이싱 내부 틈새에 대해 분석 정해 지라 틈새를 측정한 결과이다. 좌측(left) 틈새가 우측(right)보다 약 1.3 1.5배 정도 큰 것을 Fig. 8,9을 통해 알 수 있다. 이 경우에도 케이싱 내의 밸런스 난 중 부위에 접촉 흔적(rubbing mark)이 발견되지 않았다. 베어링 내의 유작 캐기작용에 의한 측 이동량의 전부가 케이싱 내에서의 좌우 틈새 변화에 반영되지는 않는다고 생각되며, 경험적으로는 몇 차 측 경(또는 베어링 내경 치수를 적용) 1 라 contradictory 이동량의 0.0004배 내외의 좌 우 틈새를 주는 것으로 적용된다. 실질적인 측 중심의 이동량은 실가 값의 1/2에 해당된다. 이 값은 터빈 측 직자 캐싱 무근의 저널 표면에서 느껴진 범위의 proximity probe를 측정한 측 경도(orbit)의 좌우 중심으로부터 추정할 수 있는 값이며, 이 값의 약 1/2 정도가 적정하다.

<table>
<thead>
<tr>
<th>Bearing Size</th>
<th>Measured Movement (mm)</th>
<th>Proper Divergence Clearances (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>254 mm (Φ10")</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>508 mm (Φ20")</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>762 mm (Φ30")</td>
<td>0.30</td>
<td>0.30</td>
</tr>
</tbody>
</table>

터빈 케이싱 내부의 좌우 틈새가 같은 값으로 설정된 저점 베어링을 채택한 터빈의 경우, 운전 중 측 중심이 유작 캐기작용에 의해 일정량 헤덕이 발생하며, 이 양적값을 미리 보상하여 틈새를 설정함으로써 정상 출력 운전 중에는 균일한 틈새 각시에 캐터의 운전이 가능하도록 하는 것이 다. 즉, 케이싱 내의 한 방향의 틈새를 미리 넓게 조정하여 조립하여야 마멸 손상 및 그로 인한 마찰 감소로부터 안전할 수 있다. 여기서 주의할 것은 좌우 간극의 설계치는 동일하게 되어 있는 것이 일반적이지만, 반시계 방향으로 운전하는 측에 있어서 최소값도 설치시 좌우 간극을 균등히 조정후 차기년도 점검시 좌우 간극이 오히려 더 넓어지는 경우의 경험을 고려하여 추정하면, 터빈 로터의 회전 반력이 케이싱의 좌측 콜로프(support key)에 작용하여 지면서 케이싱이 우측으로 밀린 경우이며, 좌측부 중심 조정이 거의 간극으로 변화되어야 할 수도 있다. 따라서, 유작 특성에 의한 측의 우측으로 이동한 케이싱의 중심이 간극상에 의한 이동량과 거의 같으므로 측의 이동량은 케이싱의 초기 또는 제품에서도 고려하지 않아도 되지만 대부분 케이싱 조정없이 안전상계 운전되어진 터빈에 있어서는 회전방향을 운전간극이 약간 더 넓은 것으로 바람직하다.

![Fig. 9 Clearances in the turbine casing (As left)](image)
4. 결론

본 연구에서는 원통형 저밀 베타링이 채택된 중기타빈의 축 위치가 운전 중 유막 베기작용에 의해 축 중심의 변화가 수반되는 사항에 대한 조 리 시의 적정 폐차 기준을 검토하였으며, 그 결 과를 요약하면 다음과 같다.

(1) 고정체와 회전체 사이의 좌우 돌새 부분을 폐차를 적용하여 조립하면 밀봉 실 단부에서 마 련 상태의 감소 및 이론 개선할 수 있으며, 결과 적으로 중기력을 유도하여 축의 안정성을 더욱 향상을 할 수 있다.

(2) 터빈 효율의 유지 및 성능개선을 위한 조치 를 수행할 때, 중기 타빈에 적용되는 원통형 저 밀 베타링의 구격별로 각각의 적정 폐차 폐차를 설정하여 적용하면 축 방향에서의 미필 손상을 최소화할 수 있고, 본 정비기법을 적용함으로써 실현이 가능하다.

참고문헌

후기

본 연구는 한국기능(주) 정비기술연구소의 전문 원리 터빈팀의 기술자로 협업이 작성되었으며, 이에 감사드립니다. 터빈 케이싱의 내부 단에서의 좌우 돌새 폐차를 설정하는 것은 그 동안 중 기타빈 정비를 담당하는 일부 현장 정비기술자들에 의해 시행적으로 적용되어왔으나, 공식적으로는 기존의 전자기 등에 의해 이루어지는 정형화 된 정비작업 병목을 벗어난 시도가기 때문에 그 사례는 쉽게 공표되지 못하였다. 이러한 시도에 의한 결과가 중간저 정비의 노하우(knowhow)라는 이유 등과 맞물리 쉽게 공개적으로 정립하지 못 한 어려움이 많았으나, 본 발표를 계기로 국내외 터빈 제작사 및 운전정비 담당자들의 운전정비지침서(O&M Manual)가 이 논고와 내용을 일부 참 조하여 관련 기술 및 절차의 개정에 반영되어 가기로 기대한다.