Development of compression method for fault data of digital protection relay using wavelet transforms

Ho-Woong Cho*, Yoon-Hoe Kim**, Byung-Jin Kim*, Bo-In Kim*, Jung-Han Kim*

Abstract - Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for the compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the compression properties of the discrete wavelet transform using actual power system data. The results presented in the paper indicate that reduction ratios up to 10:1 with acceptable distortion are achievable. This paper discussed the application of the reduction method for fault analysis and protection assessment.

1. 서 론

산업 전반에 걸쳐 전기네트워크에 대한 의존도가 높아지 고 정보사회가 고도화됨에 따라 전력의 안정적인 공급과 절약 형질에 대한 요구가 급증하고 있다. 전국에 이르는 거대한 시스템으로 대부분의 설비가 용해에 노출되 어 있는 전력계통은 특별적으로 고장 및 사고를 피할 수 없으므로 피해를 최소화하기 위한 보호계열의 역할이 매우 중요하다고 한다. 전력계통에 고장 발생시, 신호화 고장점 차단 및 사고원인을 위해서 고장전류/전압 파형 데이터를 신속하게 저장 및 전송할 수 있어야 한다. 이를 위해서 다양한 저장용량을 효과적으로 압축 및 복원 할 수 있는 기술이 필수적으로 요구되고 있다.

웨이블렛 변환은 시간주파수 영역에서 파장을 나타낼 수 있기 때문에 비정상(non-stationary wave)을 잘 표현할 수 있고, 노이즈 제거 및 압축 분야에서도 널리 사용되고 있다. 본 논문에서는 웨이블렛 변환을 통해서 고장 파형 데이터의 정수적인 정보를 소수의 웨이블렛 계수들로 추출하여 1차 압축을 하고, 이를 비선성 압축기법인 LZW 압축기술로 2차 압축하여 높은 압축비를 구현할 수 있는 방법을 제안하였다.

또한 제안한 압축 방법을 시안의 디지털 보호계열기 (HIMAP)에서 발생할 수 있는 모의사고파형 데이터에 적용하여 그 효용성을 확인하였다.

2. 본 론

2.1 웨이블렛

웨이블렛(weavelet)은 국소화되고 짧은 신호를 나타내기 에 적합한 유연한 구간에서 발생시키는 파동이다. 이 난 웨 이블렛 변환(DWT)는 특정한 웨이블렛의 시간축의 이동과 압축을 통해서 신호를 나타낼 수 있게 된다. 시간에 대한 정보는 필히 비이용 가능한 주파수 영역에서만 해석이 가능 한 파괴에 변환화는 단위 웨이블렛 변환은 시간-주파수 영역에서 해석을 할 수 있다. 그림 1은 다양한 종류의 웨이블렛을 보여주고 있다. 웨이블렛은 전체 구간에 걸쳐서 적분을 하면 0이 되어야 하고, 식(1)에서와 같이 이
2.2 데이터 압축 원리

낮은 에너지(low-energy)에 대해 많은 웨이블릿 계수 들은 신호 정보에 큰 기여를 하지 못한다. 임계치 T가 결정되면, T미만의 값들은 0으로 설정하게 되고 0이 아닌 웨이블릿 계수 값을 저장한다. 압축비는 다음과 같이 정의된다. \(C_R = N/K_a \), 여기서 \(N \)은 원래 신호의 샘플개수이고, \(K_a \)는 0이 아닌 계수값들의 개수이다. 임계된 계수벡터들은 특성실 압축기법인 LZW(Lempel-Ziv-Welch)알고리즘으로 재압축된다. 압축된 신호는 의해 LZW 알고리즘으로 재생되며 이를 이상 웨이블릿 역변환으로 재복원하여 원래의 신호를 얻게 된다. 압축 후 복원신호의 전신성은 신호 대 점음비(SNR)로 평가한다.

2.3 사례연구

본 논문에서는 디지털 보호계기의 HIMAP에서 취득한 센서 개수가 각각 180개인 2가지 고장과정에 대해서 웨이블릿 변환 기법으로 압축 복원을 수행하였다.

웨이블릿 변환에 Daubechies 웨이블릿을 사용하였고 5개의 압축비에 대해서 실험하였다. \(C_R=60,36,12,4,3 \).

그림 3. Spike가 주기적으로 존재하는 파형

그림 4. Spike 파형에 대한 웨이블릿 계수

그림 6은 그림 5의 비정상 파형을 웨이블릿 변환한 결과로서 역시 요동이 심한 수측부분의 고주파 성분들이 세로측 우측 위쪽방향으로 갈수록 나타나고 있음을 볼 수 있다.

그림 4와 그림 6에서처럼 웨이블릿 계수는 피크(peak) 중심 주변에 몰려 있음을 알 수 있고 변환된 계수의 재생에 비례하기 때문에 계수의 크기 순서대로 정렬을 하게 되면 전체 웨이블릿 계수 중에 크기가 임계치(T) 이상이 되는 일부분만으로도 파의 빈도 분석을 가능하게 한다(임계치 이하의 계수들은 0으로 설정한다).

표 1에서 살펴보면, 재단된 압축 방법(DWT+LZW)이 단순히 DWT나 LZW로 별도로 압축하는 것에 비해 높은 압축률을 주는 것을 알 수 있다. 또한 재단된 방법으로 압축된 파형을 복원한 후 원래 파형과의 신호 대 점음비(SNR)를 계산 결과도 양호함을 볼 수 있다.

표 1. 고장전류 파형 압축 결과

<table>
<thead>
<tr>
<th>파의 종류</th>
<th>DWT</th>
<th>LZW</th>
<th>DWT+LZW</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spike 파형</td>
<td>4:1</td>
<td>5.4:1</td>
<td>10:1</td>
<td>2178 dB</td>
</tr>
<tr>
<td>비정상 파형</td>
<td>4:1</td>
<td>5.4:1</td>
<td>10:1</td>
<td>28.374 dB</td>
</tr>
</tbody>
</table>

3. 결 론

본 논문에서는 단기의 디지털 보호계기(HIMAP)의 고장전류/진압파형 데이터를 압축하기 위하여 웨이블릿을 사용한 압축기법을 제안하였다. 그 내용은 우선 원래 신호를 이상 웨이블릿 변환(DWT)으로 핵심적인 계수부분만 추출해내고 이를 비슷성 압축 알고리즘인 LZW기법으로 저장하여 대용량의 데이터를 압축하는 것이다.
제안된 기법은 압축비 10:1 정도까지는 데이터의 해독이 거의 없음을 신호대잡음비(SNR)값으로 확인하였다.
또한 제안된 압축기법은 디지털 보호계산기의 데이터
통신의 부담을 줄여주어 사고파형 정보의 신속한 전송을
가능하게 해주고 또한 효율적인 데이터 저장을 가능하게
해준 것이다.

[참고 문헌]

on Pattern Analysis and Machine Intelligence, Vol. 11, No.7,
Localization and Signal Analysis", IEEE Trans. on Info.