Lightning overvoltage analysis of 500 kV GIS S/S for BIL selection

H. J. Ju, J. S. Kwak
KEPRI

Abstract - 500kV 개성전열 변전소의 절연협조의 기준은 이상전압의 역려와 동시에 설비의 중요도, 적용형태를 고려하여 설비의 시가고급을 어떤 해복수준에이하 되도록 기기의 절연 강도가 특별히 적절히 결정하는 것이다. 일반적으로 변전소 내부전압에 영향을 미치는 요소로는 모멘트형태 및 구성, 파워가의 위치와 설치대수, 파워가의 제한 전압-전류특성, 모선의 길이, 파워가와 피부오거기간의 이격거리 등이 있다.

이 논문에서는 500kV의 개성전열변전소의 기기 절연강도 결정을 위하여 복잡임시 변전소의 내부전압을 EMT와 모의하여 뉴익의 크기, 뉴익지점, 피복위치와 설치대수 등에 따른 최대전압을 모의하여 BIL(basic input se level)을 설정하였다.

1. 서 론

최근 아시아 국가들에서 도심지 인구집중으로 전력수요의 일도가 급격히 높아짐에 따라 500kV의 전력시스템을 구성하고 있다. 전력시스템의 전압이 높아짐에 따라 절연의 경비가 매우 크게 증가하고 있다. 500kV 전력시스템은 아시아 국가들의 전력시스템의 기반이 될것이며 따라서 좀 더 높은 절연성도 필요하다. 이를 위하여 파워가를 효과적으로 제한하는 방법으로 한양한 절연협조와 절연협조를 이용할 수 있다.

이 논문에서는 500kV 전력시스템의 파워가특성과 절연협조의 기준을 고려하였다. 500kV 전력시스템의 절연협조의 재선은 몇까지 고려함수장들이 있으나 이 논문에서는 EMT을 사용하여 500kV 변전소 내부전압 특성을 해석하였다. 신지할 수 있는 검증을 위하여 절연모델로 3단계모델로 하고 EMT의 TACS 모델을 사용하여 동작한 이력 특성을 모의하였다.

2. 본 론

2.1 해석에 사용된 기준모델

변전소에 입력되는 뉴익의 대비한 변전소의 절연성계는 뉴익의 크기, 균형, 피복내, W-전선의 도체배치, 뉴익지점, 탐색 점지선형등의 여러 가지 파워가에 의해 영향을 받으며 특히 변전소의 구조와 운전조건에 따라 영향을 크게 받는다. 변전소의 구조와 기기배치가 달라짐에 따라 이하한 용량을 고려하여 뉴익전압을 점검하였다.

2.1.1 뉴익전류 모델

변전소에 가까운 첫 번째 절연에 뉴익이 침입하여 역설여져 변전소로 침입하였다고 가정하고 뉴익전류의 크기는 170kA 최대값에 1us의 파도장과 70us의 피마장을 갖는 것으로 가정하였다. 다음 표 1에 해석에 사용된 기준모델로 사용한 파워가를 요약하였다.

- 표 1. 기준모델로 사용한 파워가

<table>
<thead>
<tr>
<th>파워가</th>
<th>기준모델</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>뉴익전류크기</td>
<td>170kA</td>
<td></td>
</tr>
<tr>
<td>파워가</td>
<td>170us 상각파</td>
<td></td>
</tr>
<tr>
<td>상용주파상좌</td>
<td>상용주파상좌</td>
<td></td>
</tr>
<tr>
<td>뉴익지점</td>
<td>제1절대 상부</td>
<td></td>
</tr>
<tr>
<td>송전설비</td>
<td>2상 설정 K.C.LEE</td>
<td></td>
</tr>
<tr>
<td>송전설비</td>
<td>3상, 도체수 ACSR 330, 4conductor</td>
<td></td>
</tr>
<tr>
<td>철갑, 경간</td>
<td>3단모델, 500m</td>
<td></td>
</tr>
<tr>
<td>탐색점지장</td>
<td>10 ohm</td>
<td></td>
</tr>
<tr>
<td>변전설비</td>
<td>최로조건 3상 3모델</td>
<td></td>
</tr>
<tr>
<td>개성전열전선</td>
<td>70ohm</td>
<td></td>
</tr>
<tr>
<td>파워가특성</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 송전선로의 송전철탑모델

해석에 사용된 송전선로 모델은 330m - ACSR 4등도로 체를 40cm의 간격을 갖는 송전선과 ACSR 97mm의 가공 지선으로 구성하였다. 평균 강도는 500m로 가정하고 송전철탑은 변전소로부터 5km가 구상되었고 가정하고 나머지 철탑은 동도 매직 resistance로 모델링 하여 진행과 영향의 반사를 방지하였다. 실제의 캐드에서는 EMT을 이용하여 LINE CONSTANT 모델로 값을 계산하였다.

뉴익전압의 해석에 있어서 매우 높은 저류 주파수를 갖기때문에 주파수특성 K.C.LEE 모델이 이용되었다. 송전철탑의 탐색점지장각도는 10%를 사용하였다. 절대모델은 아크 화학저에서 보여지는 난이도 및 모형의 영향을 크게 주게 된다. 따라서 정확한 모델링을 위하여 3단 절대모델을 사용하였다.

그림 2에서 송전철탑의 모델을 동도로 구성하였다.
- 전철의 양간 지점(H1, H2, H3)은 5m, 5.7m, 29m
- 전철의 양간 동도 지점(R1, R2, R3)은 22.95m, 26.16m, 33.48m로 동도.
- 전철의 양간 동도 인덕류(I1, I1, L2, L3)는 6.13mH, 6.59mH, 8.93mH로 동도.
- 전철의 재지입력변상(2z1 = 2z2, 2z3)은 220V, 220V, 130V으로 동도.

2.1.3 EMT/TACS 아크혼 동도모델

위와 같이 높은 영향을 주는 아크혼의 핵 모델은 시간에 의한 스위치의 아크 인덕류로 동도가 될 수 있다.
2.1.4 변진소 배치의 동작 조건
모의에 사용된 변전소 서지 임피던스는 EMT의 LINE CONSTANT를 이용하였다. 모델로 사용한 변전소는 1.5차단방식이며 이것은 한 모션에 두개의 변압기 빌코를 갖는 형태이다. 가장 흔한 경우의 동작 조건을 모의하여 여러형태의 연결을 가장하였고. 그림 4는 모델로 사용한 변전소의 형태를 보여주고 있다.

2.1.5 피뢰기 특성 조건
모의에 사용된 피뢰기 특성이 피뢰기가 설치될 장소는 뇌저지의 모형에서 중요하다. 따라서 표 2와같이 500kV의 피뢰기특성을 사용하여 모의하였다.
3. 검토 결과

500kV 변전소에 끌입한 뇌서지전압이 피뢰기의 특성, 설치 장소, 설치 개수에 따라 과전압의 크기를 검토하였 다.
첫 번째 적합한 절연 설계를 위하여 피뢰기를 인입부에 설치하여 검토하였다. 그 결과 인입부와 모선사이에 최 대저기의 과전압은 2,184kV로 그림 6의 결과를 얻었다.
기초의 BIL 값인 1,550kV를 초과하였다.

인입부의 연결부에 피뢰기를 설치하고 과전압을 얻어 시 키기 위하여 피뢰기를 모선에 2기를 설치시 과전압을 더 양해할 수 있다. 이 경우 과전압은 1,281kV로 레스트 전 원인 1,550kV의 21%의 과전압 크기를 갖는다.

버스에 피뢰기 설치를 변경하여 뇌서지 해석을 한 경우 최대전압이 1,735kV와 1,732kV이다. 이것은 BIL전압 1,550kV를 초과하는 값이다. 모든 모선에 피뢰기를 설치하는 경우 987kV로 BIL전압 이하로 과전압을 제한할 수 있다.

MTR 1차측의 피뢰기를 제거한 후 최대 과전압은 1,216kV로 BIL전압을 초과하게 된다.

위의 결과에 따라 전전소의 피뢰기는 다음과 같이 설치 하여야한다.
- 인입부 철담측
- 인입부 철담과 버스 연결부
- 각 모선의 발단
- 변압기의 1차측

4. 결 론

논문에서 500kV 변전소의 뇌서지시 과전압을 실제의 철 담모델과 선로모델 그리고 변전소내의 설비를 포함하여 모의하였다. 그 결과로 피뢰기의 설치의 위치를 정하고 설치하여 결과를 얻어 배른다. 피뢰기를 설치했을 때의 과전압의 크기는 다음과 같다.

- 인입부의 최대 과전압의 크기는 1,381kV로 BIL값 1,550kV의 21%의 과전압을 갖는다.
- 모선의 최대 과전압의 크기는 987kV로 BIL값 1,550kV의 57%의 과전압을 갖는다.
- 변압기 1차측의 최대 과전압의 크기는 957kV로 변압 기 BIL 1,425kV의 67%의 과전압을 갖는다.
- 모든 부분의 최대 과전압이 BIL값을 만족한다.

[참고 문헌]


<table>
<thead>
<tr>
<th></th>
<th>Calculated Voltage [kV]</th>
<th>BIL [kV]</th>
<th>margin [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming</td>
<td>1,281</td>
<td>1,550</td>
<td>21</td>
</tr>
<tr>
<td>Bus</td>
<td>987</td>
<td>1,550</td>
<td>57</td>
</tr>
<tr>
<td>Transformer</td>
<td>957</td>
<td>1,425</td>
<td>47</td>
</tr>
</tbody>
</table>

Margin = Test_Volt. - Max. Volts. / Max. Voltage x 100 [%]