Application of ULTC and load models in dynamic voltage stability analysis

Hwchang Song
Kunsan National University
Byongjun Lee
Korea University

Abstract - Static approaches usually employed in voltage stability analysis are based on the pre-determined scenarios of varying load and generation patterns. Thus, even though the approaches are applied to the same system condition, one may obtain different voltage instability phenomena using different scenarios. In the stage of concrete control strategy determination against voltage instability, dynamic approaches with full-time and/or quasi steady-state simulations need to be applied in order to confirm the effectiveness of the established control strategies. This paper describes the ULTC and dynamic load models, and discusses characteristics of the models.

1. 서론

최근 전력계통은 안정성 한계에서 운전되고 있으며, 특히 부하의 집중화, 원거리 전력전송의 증대 등으로 인하여 전압안정도 측면에서 취약점이 발견되고 있다. 2003년 미국 동부부지역에서 발생한 대규모 정전사고[1]는 계통 주파수가 심각한 변화를 경험하기 전에 계통 안정의 급속히손실 감소에 의한 "전압 붕괴"에 의하여 발생된 것으로 알려지고 있다. 이 전압 붕괴는 계통 요소의 고장 및 저항치 증가에 의한 기계적인 오류(Machine errors), 각 전력 파일 간의 원활한 정보 공유를 갖지 못한 점(Information system errors), 계통 운전자간 적절한 조치를 취하지 못한 점(Operator actions) 등으로의 복잡한 요인에 의하여 발생되었다. 계통은 주어진 신희도 기준(Reliability Criteria)에 의하여 운전되더라도 이러한 여러 부주의한 인원붕괴는 발생할 수 있으므로, 심각한 상황 발생 시 계통의 전압안정성을 효과적으로 평가하고 제어전략(Control strategy)을 결정,작용할 수 있도록 필요한 장치가 수립되어야 한다.

계통의 전압안정성 평가를 위해 일반적으로, 적용되고 있는 방안은 P-V 해석이다[2]. 이는 전력적인 해석 방안에 해당하므로 계통 과장에 따른 부하단의 참가 및 배전자간의 회복 특성에 의한 모델의 적용이 어렵다. 따라서 현재 주어진 계통 조건에서 부하 및 발전 증가에 대한 방향을 포함하는 시나리오가 먼저 결정되어야 하며, 이 시나리오에 의하여 계통의 전압안정계 속에의 심각성을 나타내는 지수(Index) 중 하나의 유 효성 여부(Active power margin)의 정보를 얻을 수 있다. 그러나 계통 과장에 따라서 계통 안정의 감소 및 회복은 다르게 전개되는 것이 자연스럽다. 또한 부하 증가량이 존재할 수 있게 된다. P-V 해석에서 다른 부하 증가 시나리오가 이용될 경우, 계통은 또 다른 전압 붕괴를 경험할 수 있다. 즉 전압붕괴에 참여하는 각 요소 또는 연결 지점이 바뀔 수 있다는 것이다. 따라서 정적인 해석에 의하여 주어진 상정고장 목록으로부터 심각한 상정고장 및 안정화 방안에 대한 상세 해석을 위해 동적인 전압안정도 해석이 수행되어야 한다. 즉, 정적 해석에 의하여 주어진 기준을 만족하도록 심각한 고장에 대한 제어 방안이 수립되어야 한다. 그러나 이러한 전압 붕괴를 적용하려고 한다. 또한 이 두 모델에 의한 부하 회복 특성에 대하여 설명하려 한다.

2. 부하모델의 중요성

과도안정도 해석에 있어서 적용되는 부하모델은 정적 모델로 유 효전력 부하에 관하여 다음과 같이 표현할 수 있다[3].

\[
\frac{P}{P_{th}} = \left[\frac{V}{V_{th}} \right]^{2} + \left(\frac{V}{V_{th}} \right)^{2} + \left[\frac{V}{V_{th}} \right]^{1} + L_{ld}
\]

이러한 P, P, P는 해당 유 효 부하에 대한 원장파인, 정량, 정량. 정량은 부하의 전압에 의하여 이루어진 부하의 무게를 의미하며, L은 계통 주파수에 대한 부하의 최적값을 나타낸다. \(\frac{P}{P_{th}}\)은 주파수 변화에 대한 변화를 나타낸다.

(1)의 부하모델은 부하의 단기 특성(Short-term characteristic)을 표현하고 있다. 계통이 사고를 경험하고 난 후 과도 안정도 측면에서 안정할 경우 빠른 다이나믹스(Fast dynamics)에 해당하는 상태변수가 안정적인 경향에 도달할 것이며, 이 때 이 부하모델에 따라 수립되는 안정점이 다르게 결정된다. 이 부하모델의 변화에 대한 이론적인 근거가 유 효전력의 수급의 불균형이 심화되므로 전압의 과도 변화가 어느 정도 범위 내에서 조정되도록 계통 운전자들 이를 충분히 고려해야 한다.

[4]에서 전력계통 안정도 현상에 대하여 몇 가지의 기수를 분류하였으며, 전압안정도는 단기 전압안정도(Short-term voltage stability), 장기 전압안정도(Long term voltage stability)로 분류되었다. 단기 전압 안정도의 경우, 과도 안정도와 구분하기 어려우며, 계통 안정적 전압과 관련된 빠른 다이나믹스에 의하여 전압의 급속히 변화 또는 유 효전력 불균형이 발생할 수 있다. 계통이 안정적 전압 안정도 측면에서 안정적이 발생된 경우로 정의될 수 있다. 그러나 단기 전압부정상의 경우 과도의 전압과 전원 상태에 따라 몇 가지 예를 제시한 부하데요트가 존재한다. 계통에서 발생한 전압부정상의 예로서 볼 수 있다. 단기 전압부정상이 발생할 경우 전압부정상 현상이 좀 더 일반적인 것으로 여겨진다. 단기 전압부정상 현상에 대한 계통 해석은 수행하기
위해서는 계통의 부하 회복 특성 (Load recovery characteristic)이 고려되어야 한다. 그림 1에서와 같이 계통의 정상 상태 시 ‘a’에서 운전되고 있다고 하자. 상징 사고 #1의 경우, 사고 후 저도안정 측면에서 안정할 경우 단기 부하 특성을 따라 ‘b’라는 폭은 다이나믹스의 평형점으로 수렴된다. 이 때 계통에서 부하단의 배선 수반업의 자동 전압조정 (Automatic voltage regulation) 함수의 동작으로 전압이 본래의 전압으로 회복되고 이에 따라 부하도 정상 상태 수준으로 복원하려는 특성을 갖게 된다. 그림 1에서와 같이 정기 부하특성 (Long-term load characteristic)이 정점이라고 가정하면 계통 운전은 ‘b’에서 이동하여 전체 시스템의 평형점 ‘c’에서 약지게 된다. 상징사고 #1의 경우, 폭은 다이나믹스의 평형점 ‘c’에서부터 부하가 점점 회복되므로 부하의 정확하게 정기 부하특성과 만나는 점이 존재하지 않기 때문에 이 ‘c’까지 이르게 되며 그 이상의 부하량에 대한 내트워크 P-V 곡선과 부하 P-V 곡선과 만나는 점이 존재하지 않게 된다. 이 점은 계통은 SIB (Singularity induced bifurcation point)로 알려져 있으며, 이 점에서 는 출력전력을 전지화로 구성하여 내트워크 조건으로 이용하는 모델이 더 이상 유용하지 않게 된다.

그림 1. 부하 회복 특성을 설명하는 P-V 곡선의 예

위에서 설명한 바와 같이, 정기 전압안정도에 대한 시스템의 특세에서 부하 회복 특성을 나타내는 모델이 포함되지 않을 경우 전압안정성에 대한 해석이 불가능하다. 따라서 부하특성을 나타낼 모델이 수렴되어 시스템의 환경에 추가되어야 한다.

3. ULTC 및 동적부하 모델

3.1 ULTC에 의한 부하 회복 모델

배전계통까지 고려하는 hierarchy Level III 문제는 계통 전압안정도 해석에서는 이용되지 않으며 HV (High voltage) 모션에서 축정한 부하가 연결된 모델을 일반적으로 이용한다. 그러나 정기 전압안정도 시스템의 해석에서는 추가적으로 ULTC로 연결된 부하를 배선으로 이 동시적인 모델을 적용한다. 그림 2에서 이를 설명하고 있다. ULTC는 2차 측 전압을 유지하도록 하는 토큰 조정을 이루며 이 전압계통에 의해 계통 부하의 원인 값으로 회복되는 특성을 갖게 된다.

그림 2 부하 회복 특성을 위한 ULTC의 추가

그리고 Line-drop compensation을 고려하기 위하여 \(X_{ds} \) (0.02~0.03 pu)을 포함시키기 위해 배선 변압기의 2차 측과 동일한 전압수준의 한 개의 모션을 추가한다. \(X_{tr} \) 은 약 0.1 pu가 이용된다 [1]. 텐 다이나믹스는 차분방정식의 다음과 같은 형태로 표현된다.

\[
2
\]

여기서 오래전 \(k, k+1 \)은 시모의 상에서 현재 스텝, 다음 스텝을 나타낸다. \(k \)은 텐의 조정 스텝을 나타낸다. \(D \)는 2차 측 전압의 유지하고자 하는 전압배우에 해당하며, \(V_{2,ref} \)는 2차 측 기준 전압을 의하시는 시모의 상에서 2차 측 전압이 DB 범위 내에 있지 않을 경우 시간 지연 \(T_{a} \) 이며 Mechanical delay) 및 기계 시간 지연 \(T_{m} \) (Mechanical delay) 후 점이 다음 텐으로 이동하게 한다. 일반적으로 \(T_{a} \)은 0.5 초에 해당하나, 조기 시간 지연 \(T_{a} \)은 25~30 초 정도에 이른다. \(T_{m} \)은 5초~10초 정도이다.

그림 2의 ULTC에 의한 부하 회복 모델을 이용할 경우 상당히 폭은 부하 회복 특성을 나타내게 된다.

3.2 동적 부하 모델

동적 부하모델은 계통의 HV 단에서 부하 다이나믹스를 동적으로 표현하기 위하여 제안되었다 [5]. 이 모델은 부하가 해당 모션의 전압 및 그 모션의 전압의 시간적인 변화에 의하여 결정되는 값을 기반으로 모듈화하여 부하 특성을 동적으로 요소를 포함하는 모델로 전개하였다. 이 모델의 유효성 부하 부분은 다음과 같이 표현한다.

\[
\begin{align*}
P_r + T_r P_r & = P_0 \left(\frac{V}{V_0} \right)^n - P_0 \left(\frac{V}{V_0} \right)^{n_r} + P_r \\
\end{align*}
\]

여기에서 \(P_r \)은 회복 부하를 나타내며, \(T_r \)는 회복 부하에 대한 시간에 해당한다. \(a_r \)는 각각 해당 부하의 전압 및 단기 전압의 특성에 나타나는 지수이다. 그리고 (3)의 두 번째 식에서 \(P_0 \)는 각 시모의 전압에 부하를 나타낸다. (3)의 의미를 살펴보면 계통 동역에 따라 해당 모션 전압이 감소한다고 할 때 전기 부하 응답 및 단기 부하 응답의 차이가 존재하게 되며 이 차이에 의하여 \(P_r \)가 증가되며 \(P_0 \)는 단기 부하응답에 \(P_r \)를 더하여 결정된다.

동적 부하모델에 의한 부하 회복은 ULTC에 의한 부하 회복보다 만약 더 느리게 나타나며, 시간에 의한 1차 대역으로 표현되므로 평형점 근처로 감속 부하 특성은 감소하게 된다. 동적 부하모델의 의도하여 많은 해당 HV 모션에서의 전압-부하 특성의 측정 데이터를 이용하여 결정할 수 있으며, 같은 모션이라도 계통 상태가 갱신될 때, 계열음에 따라 다른 파라미터를 갖을 수 있다.

4. 사례 연구

본 설에서는 ULTC 및 동적부하모델을 포함하는 계통에 대한 정적 시뮬레이션 (Quasi Steady-State simulation)을 수행하여 그 결과를 보고하였다. 연구 계통으로는 WECC 179-모션 계통이 적용되었다. 본 연구에서 포함된 계통 모델들의 다음과 같다.

각 발전기는 2축 모델이 이용되었으며, 각 발전기는 IEEE DC-type 1의 Exciter 및 간단한 Governor 모델을 포함하고 있다. ULTC 부하 회복 모델의 적용을 위하여 각 모션에 배선단의 2차 측 모션이 추가되었으며 이 2차 측으로 동기 부하가 부착되었다. 이 때 부하 모델은 정립 피드포워드 모델로 적용되었다.

각 ULTC의 측의 조정 벡터는 \(0.8 \)~1이며 측의 조정 벡터 수준은 0.0025이다. 그리고 ULTC의 \(T_a \)는 \(20\)초로 하였으며 \(T_m \)는 5초로 선택하였다.

동적 부하모델의 적용 연구에서는 2축 모션에 배치된 부하 모델을 (3) 표현되는 모델로 대체하
였다. 이 때 모델 파라미터는 일반적으로 다음 표와 같이 적용되었다.

<table>
<thead>
<tr>
<th>유 효 전력</th>
<th>a_s</th>
<th>a_r</th>
<th>T_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>무 효 전력</td>
<td>b_s</td>
<td>b_r</td>
<td>T_0</td>
</tr>
</tbody>
</table>

- 동적 부하모델 적용 시 ULTC의 태은 초기값으로 고정하였다.
- 정상상태에서 초기 전류는 57,746 [MW]이다.

4.1 ULTC 부하회복 모델 적용 예

본 시모여서 적용된 고장은 WECC 계통의 116모션의 발전기를 계통으로부터 분리하는 것으로 1초에 적용되었다. 이 고장에 의하여 계통 전압수준 감소되어 전체 부하가 57,285 [MW]으로 줄어든다. 이 상황에서 부하모

션 DB 범위 밖으로 전압이 떨어지는 모션과 연결된 ULTC의 전압조정을 위한 태이어가 시작된다. 위에서 설명한 ULTC의 태는 20초정도 DB 범위 밖에 해당모션 전압이 지속적으로 존재하면서 동작하기 시작한다. 그림 3에서 상대적으로 큰 전압변화를 경험한 모션 1101, 1103, 1117의 전압의 변화를 보여주고 있다. 사고 전용 및 모션으로부터 20초 경과 후 계통 부하의 정상상태 수준으로 회복하며 해당 모션의 전압도 정상상태 전압을 회복하게 된다.

![그림 3. ULTC의 태 조정에 의한 계통전압응답](image)

4.2 동적 부하모델 적용 예

앞에서 설명한 바와 같이 본 연구에서 동적 부하모델에 대한 적용을 2자형태의 부하모델을 표 1의 파라미터값 갖는 (3)식의 동적부하 모델을 포함시켜 주동력 모드를 수행하였다. 이 때 태된 초기값에 고정되어 전압변화에 동작하기 시작한다. 4.1 절에서와 같은 상황에서 5초에 적용되었으며 모의는 1000초까지 이루어졌다.

동적 부하모델 적용의 예와 4.1절에서 설명한 ULTC에 의한 부하회복 모델의 경우와 비교하면, ULTC의 적용한 경우 계통 부하회복의 속도가 비교적 동적 부하모델 적용한 경우보다 빠르게 진행되고 있음을 알 수 있다.

그림 4. 동적부하 모델 적용 시 t-V 곡선

![그림 4. 동적부하 모델 적용 시 t-V 곡선](image)

그림 5. 동적부하 모델 적용 시 1117모션의 부하회복

5. 결론

본 논문에서는 장기 전압정절서 시모의 해석에서 필수적인 계통의 부하회복 특성을 표현할 수 있는 두 모델에 대하여 설명하고 WECC 179 모션 계통에 적용하여 그 전압 및 부하 회복의 특성에 대하여 설명하였다. 장기 전압정절서 해석을 위한 동적 시모의 해석에서는 일반적인 판다른정절서 시모의 해석에 이용되는 정적인 부하모델 맺을 적용하였을 때 전압정절서 정량에서 가장 큰 전동스태레스트러스 요인에 해당하는 부하 증가를 보이지 않을 수 있으므로 부하회복 특성을 나타내는 적절한 모델을 선택하여 적용하여야 한다. 전압정절서에 대한 동적 시모의 해석은 계통의 전압불안정 메커니즘 및 수령된 계통 전략의 시간응답 분석에서의 검증을 위해 요구된다.

참고 문헌