DC 48[V] 통신용 전원 장치의 특성

정한태·조만철·문성언·김주원·문상길·서기가
경남대학교

Characteristics of DC 48[V] telecommunication power supply

H.T.Jung·M.C.Jo·Y.T.Yoon·J.Y.Kim·S.P.Mun·K.Y.Suh
Kyungnam University

Abstract - The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two stage power converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[9] of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

1. 서 론

상용 전원의 3상 교류전력을 입력으로 하여 절연된 직류전력을 출력으로 한 AC-DC 전력변환기는 수 kW 이상의 통신용 전원인 직류 급전 방식 전원 등으로서 사용되고 있다. 최근 3상 교류계의 입력 전류의 고주파 성분에 의하여 입력 전류가 전원에 포함된 고주파 전류가 저항 기울에 가해 과화와 전원 고전압을 AC-DC 변환기와 관련한 연구가 이어지고 있다. 예를 들어 DC 48[V]의 통신용 전원은 고전압이면서 입력 전류의 성분을 정화하여 복합기로서의 검정과 랜턴 power factor를 고려하여 입력하면 PWM 정류기를 사용하여 전력 변스 isnt는 물론이면 PWM 정류기의 직류 출력을 개선하기 위해서는 DC/DC 변환기가 필수적으로 회로 시스템이 복잡하게 되며, 회로의 복잡성과 부하 전원 수용력이 증가하게 되고 있다.

이를 개선하기 위해서 회로 구성이 간단하고 동정 수단을 갖는 전류기의 파라미터를 이용하여 3상 교류로부터 직접 절연된 직류 전력의 변환을 관할 하는 회로를 제안하고 있다. 그로나, 파라미터하기가 파라미터의 입력 전력에 대한 파라미터에 관련된 전력이 높아지며, 파라미터의 입력 전력이 크기 때문에 복잡한 요소가 요구하는 전력에 대한 문제점을 발생한다.

본 논문에서는 이러한 문제점을 해결하기 위해 3상 교류를 1단계의 전력변환단계로 직접 절연하여 DC 48[V]로 변환하여 새로운 1[kW]용 포워드형 정류기를 제안하고자 한다. 제안한 포워드형 정류기는 3상의 전력에 접속된 3단계의 전력변환기를 구성하며, 전력변환기의 각 파워 단계의 스위칭 디바이스의 턴-온시 제어 주기내의 동도시간을 조정하여 입력 전류에 대한 저항이 일정하게 보강될 수 있도록 되어 있다. 그리고 포워드형 타입으로 파워 단계 스위칭 디바이스의 파워 전류가 작으며, 92.1%의 변환 효율과 IEC61000-3-3 Class-A의 고주파 입력 전류 규제값을 만족하는 입력 전류를 얻고자 한다.

또한 3상 교류 전원에 의한 발음이 충돌하고 있는 상태에서도 충돌 전압의 폭동을 저감하고자 한다. 이러한 모든 결과는 시뮬레이션과 실험을 통하여 확인하고자 한다.

2. 제안한 회로의 구성 및 동작원리

그림 1은 기존의 고주파 절연형 3상 교류 입력 통신용 직류 전원의 회로를 나타낸 것이다. 그림 1에서 제안한 회로는 3상 전원(VAC)로부터 단위 입력 전압을 입력하고 중간 전압을 출력하는 3상 PWM 정류기와 중간 전압을 전환하여 DC 48[V]로 변환한 DC/DC 변환기, 10개의 스위칭소자, 게이트 제어, 밸 스 발생회로, AC-DC와 DC-AC의 전력변환의 DC 중간 전압을 폐쇄하는 저항 콘덴서와 이 전압을 제어하기 위한 전압 검출기로 구성된 다. 그림 2는 제단한 고주파 절연형 3상 PWM 전류기의 회로도이다. 제단한 회로와 기존의 회로를 비교하면 제안한 회로의 고주파 절연 전류의 2차측은 그림 1과 동일하게 구성되면 다음의 같은 특성을 가지고 있다.

이를 개선하기 위해서 회로 구성이 간단하고 동정 수단을 갖는 전류기의 파라미터를 이용하여 3상 교류로부터 직접 절연된 직류 전력의 변환을 관할 하는 회로를 제안하고자 한다. 그로나, 파라미터하기가 파라미터의 입력 전력에 대한 파라미터에 관련된 전력이 높아지며, 파라미터의 입력 전력이 크기 때문에 복잡한 요소가 요구하는 전력에 대한 문제점을 발생한다.

본 논문에서는 이러한 문제점을 해결하기 위해 3상 교류를 1단계의 전력변환단계로 직접 절연하여 DC 48[V]로 변환하여 새로운 1[kW]용 포워드형 정류기를 제안하고자 한다. 제안한 포워드형 정류기는 3상의 전력에 접속된 3단계의 전력변환기를 구성하며, 전력변환기의 각 파워 단계의 스위칭 디바이스의 턴-온시 제어 주기내의 동도시간을 조정하여 입력 전류에 대한 저항이 일정하게 보강될 수 있도록 되어 있다. 그리고 포워드형 타입으로 파워 단계 스위칭 디바이스의 파워 전류가 작으며, 92.1%의 변환 효율과 IEC61000-3-3 Class-A의 고주파 입력 전류 규제값을 만족하는 입력 전류를 얻고자 한다.

또한 3상 교류 전원에 의한 발음이 충돌하고 있는 상태에서도 충돌 전압의 폭동을 저감하고자 한다. 이러한 모든 결과는 시뮬레이션과 실험을 통하여 확인하고자 한다.

그림 1은 기존의 고주파 절연형 3상 교류 입력 통신용 직류 전원의 회로를 나타낸 것이다. 그림 1에서 제안한 회로는 3상 전원(VAC)로부터 단위 입력 전압을 입력하고 중간 전압을 출력하는 3상 PWM 정류기와 중간 전압을 전환하여 DC 48[V]로 변환한 DC/DC 변환기, 10개의 스위칭소자, 게이트 제어, 밸 스 발생회로, AC-DC와 DC-AC의 전력변환의 DC 중간 전압을 폐쇄하는 저항 콘덴서와 이 전압을 제어하기 위한 전압 검출기로 구성된 다. 그림 2는 제단한 고주파 절연형 3상 PWM 전류기의 회로도이다. 제단한 회로와 기존의 회로를 비교하면 제안한 회로의 고주파 절연 전류의 2차측은 그림 1과 동일하게 구성되면 다음의 같은 특성을 가지고 있다.

1. 3상 교류 전원측은 각 전선에 접속된 고주파절연 트랜스와 방방향 파워 반도체 스위칭 디바이스와의 직렬 회로로 구성된다.
2. 고주파 절연 트랜스의 일차 코일은 전부 전자 집합되어 있고, 각자의 코일의 단자 전압은 같다.
3. 방방향 파워 반도체 스위칭 디바이스의 온-오프 상태에 의하여 고주파 절연 트랜스의 단자 전압과 고주파 절연 트랜스에 흐르는 전류를 폐쇄하고, 각 상의 전류는 f, fs는 교류 계통 전압에 대하여 역률 1이 되도록 제어 처리한다.
4. 제단한 회로는 기존의 회로보다 파워 반도체 스위칭 디바이스가 적으며, 기존의 회로에 필요한 중간 전압이 없기 때문에 적절 폐쇄 콘덴서와 전압 검출기가 필요하지 않는다.
그림 2에서는 각각 커뮤니티 코일은 공통의 코어에 접속되어 있고, 3개의 고주파 절연 트랜스 1차 코일 단자가 전압은 같다. 고주파 절연 트랜스의 단자 전압 v_{tr}가 도통하고 있는데 v_{tr}고, v_{ts}가 도통하고 있는 때 v_{ta}이며, v_{ts}가 도통하고 있는 때 v_{ts}가 된다. 또한, Q_{oc}, Q_{vs}, Q_{tr}가 전분지 상태에서 i_{t}는 2개의 고주파 절연 트랜스의 2차 코일을 한계한 것이다. 이때 다이오드 D_{a}와 D_{b}는 도통되며, v_{ta}는 제도가 된다.

그림 3은 산업용 루프의 구조
Fig. 2 Proposed three-phase AC-DC power converter circuit for telecommunication energy plant.

그림 4는 입력전압과 루프의 관계 ($A=0$)
Fig. 4 Relation of volts alternating current and duty factor ($A=0$)

그림 5는 입력신호의 생성
Fig. 5 The generational process of on/off signal

3. 시뮬레이션 및 실험결과 고찰

표 1은 시뮬레이션과 실험에 사용된 회로 정지를 나타낸 것이다. 회로 정지는 고주파 절연 트랜스에 있는 인덕터스에서 발생하는 저주파 전압을 억제하기 위해서 트랜스 1차 코일 3방의 단자에 커버티터(150Hz)와 저항 (25kΩ)으로 구성된 RC 스트리오 회로를 병렬로 접속하였다.

그림 6은 절전 $48(1/100A)$의 고주파 전압을 3상 입력 1단 변환 PWM 정류기(아래)와 일반적으로 사용되어지는 정류기(위)의 모았을 비교한 것이다. 그림 6에서 알 수 있듯이 제한된 정류기의 기존의 정류기보다 약 20%정도 소형, 경량화 된다.

그림 7은 교류 입력전압과 전류의 관계를 나타낸 것이며, 그림 7에서 교류 입력 전류는 확장의 상태로 제어하고 있을 것을 알 수 있다.
표 1 시뮬레이션과 실험에 사용된 회로 잡수
Table 1 Circuit parameters using experimental and simulation

<table>
<thead>
<tr>
<th>AC voltage</th>
<th>380/200[V]/60[Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching frequency</td>
<td>24[kHz]</td>
</tr>
<tr>
<td>Condensers (C_{st}, C_{st}, C_{s})</td>
<td>3.3[μF]</td>
</tr>
<tr>
<td>Turn-ratio of transformer</td>
<td>29 : 12</td>
</tr>
<tr>
<td>Smoothing reactor (L_{s})</td>
<td>100[uH]</td>
</tr>
<tr>
<td>Smoothing condensor (C_{s})</td>
<td>1680[μF]</td>
</tr>
<tr>
<td>Output power (voltage/current)</td>
<td>1.4[kW] (56[V]-25[A])</td>
</tr>
<tr>
<td>Dead time</td>
<td>1.0[μs]</td>
</tr>
</tbody>
</table>

그림 6 제안한 정류기(아래)와 기존 정류기(위)의 외관비교
Fig. 6 Comparative appearance of proposed rectifier(lower side) and conventional rectifier (top side)

그림 7 입력신호와 전류의 실험 과정
Fig. 7 Experimental waveforms of input voltage and current

그림 8 부하변동시의 응답 과정(부하전류 26[A]→0[A])
Fig. 8 Transient waveforms of charge load (load current 26[A] to 0[A])

그림 9 부하변동시의 응답 과정(부하전류 0[A]→26[A])
Fig. 9 Transient waveforms of charge load (load current 0[A] to 26[A])

그림 8은 부하 전류를 26[A]에서 0으로 급변시킬 경우 각 부하의 실험 과정을 나타내고, 그림 9는 부하 전류를 0[A]에서 26[A]로 급변시켰던 때의 각 부하 실험 과정을 나타낸 것이다. 그림 8과 그림 9에서 부하 변동시에 서도 입력 전류 \(i_{in}\)의 정상과의 형태로 제어되며, 파도성에 있어도 트랜스가 보화되지 않아도 동작할 수 있는 것을 확인할 수 있다. 그림 10은 부하 전류의 크기에 따라서 효율과 역량의 특성을 나타낸 것이다. 그림 10에서 제안한 회로의 부하 전류가 15[A] 이상일 때 입력 역량은 90% 이상, 최대 변환 효율은 91.1%가 연속지는 것을 확인할 수 있다. 그리고 제안한 회로의 정격 부하 전류의 손실은 11.2[W]를 가지는데 이것은 제어 회로에서 10[W], 스위치 소자 (IGBT)의 스위칭 손실과 도통 손실이 각각 22[W], 18[W], 2차 주파수의 손실 25[W], 트랜스의 손실 30[W], 스니프 손실 3[W], 그 밖의 실장 배선 등이 4[W]에서 발생된다.

그림 10 부하 전류에 따른 효율과 역량의 특성
Fig. 10 Characteristics of Actual efficiency and power-factor with load current

4. 결 론
본 논문에서는 새로운 고조도 절연형 3상 교류 입력 통신용 직류 전원 시스템에 관하여 회로 구성과 제어 방법을 제안하였다. 제안한 회로는 실험을 통하여 다음과 같은 특성을 얻을 수 있었다.

(1) 제안한 회로는 고조도 전류의 규제회(IEC61000-3-2 Class A)를 만족한다.
(2) 고려할 고정파 전류의 얇기를 얻을 수 있다.
(3) 절연 트랜스 1개와 3개의 양방향 주파 반도체 스위칭 다이오드로 구성할 수 있기 때문에 회로 구성이 기존 회로보다 30% 정도도 소형, 경량화가 가능하다.
(4) 제어 주파수를 조절하여 트랜스의 여타 전류의 증가를 억제하였으며, 트랜스가 소형화가 가능하다.
(5) 기존의 정류기 회로보다 실질적인 직류 전력 을 얻을 수 있다.
(6) 기존의 Flyback 컨버터 방식보다 스위치 소자 (IGBT)의 전기적 스트레스가 작다.

[참 고 문 헌]
(1) IEC61000 3 (1995 03), 1997.12

- 904 -