RFID 기반 유비쿼터스 센서 네트워크의 지능적 상황인지 지원

고경철, 고영배
아주대학교 정보통신융합학과
*아주대학교 정보통신융합학과
kck@ajou.ac.kr, {dwlee, youngko}@ajou.ac.kr

Supporting Intelligent Context-Awareness in Ubiquitous Sensor Networks with RFID

Kyoung-Chul Ko*, Dong-Wook Lee, Young-Bae Ko
Graduate School of Information and Communication, Ajou University
*College of Information and Computer Engineering, Ajou University

요약
Radio Frequency Identification (RFID) 시스템은 객체에 부착된 RFID 태그를 리더로 읽어 들여 정확하게 객체를 인식할 수 있어 상황 인지를 위한 중요한 정보를 제공할 수 있다. 그러나 태그의 리더간의 통신이 단일 속도로 구성되어 있기 때문에 대상 지역의 전체를 인식하기 힘들으며, 상황 인지를 위한 층적 정보를 제공할 수 없는 문제를 가지고 있다. 본 논문에서는 최근 제안되고 있는 무선 센서 네트워크와 RFID 시스템의 결합을 통하여 RFID 시스템이 대상 지역 전체를 인식할 수 있게 하고, 이 정보를 센서 네트워크의 센싱 정보와 함께 활용하여 지능적인 상황 인지가 가능한 RFID 기반 무선 센서네트워크의 지능적 상황 인지 지원 시스템을 제안한다.

제안된 시스템에서는 RFID 시스템의 객체 인지 능력을 활용할 수 있을 뿐만 아니라, RFID 시스템에 네트워크 기능을 제공하여 지능적 상황을 인지할 수 있게 한다.

1. 서론
상황 인지 기술이란 현실의 상황을 정보화하고 이를 활용하여 사용자 중심의 지능화된 서비스를 제공하는 것이다. 이로써 현실 세계에 존재하는 신체의 상태를 정확하게 정의한 정보를 전달함으로써 [1]. 컨텍스트 특성을 이용한 시스템 전반적으로 할당이 잘 되는 무선 센서 네트워크이다. 센서 네트워크는 땅, 온도, 습도, 압력, 같은 데이터를 센서 노드가 수집하여 베이스 노드에 전달함으로써 컨텍스트 특성을 이용한 기반을 제공한다 [2]. 이러한 무선 센서 네트워크는 대형 지역에 대한 충분한 정보를 제공하지만, 대상 지역을 존재하는 객체에 대한 정보를 제공하는 태그는 대상 지역의 정확 정보를 제공하지 못한다. 대상 지역의 정확 정보를 존재하는 객체에 따라 의미가 달라지기 때문에 센서 네트워크가 제공하는 정보는 상황 인지를 위한 충분한 데이터가 아니며, 따라서 센서 네트워크가 제공하는 정보만으로는 정확한 상황 추론이 어렵다.

그러나 최근 개발된 태그의 정확한 정보를 확인하거나 주변의 상황정보를 읽어 들이는 RFID 기술의 경우 영구적 전반적으로 전달되고 있는, 이러한 RFID 시스템에서는 태그의 특성을 이용하여 정확히 정의할 수 있는 능력이 있기 때문에 RFID 시스템을 운영함으로써 상황 인지를 위한 충분한 컨텍스트를 얻을 수 있다. 하지만 RFID 시스템은 태그의 인식 범위가 매우 작다는 한계가 존재한다.

본 논문은 이러한 RFID 시스템의 인식 범위 한계 문제를 무선 센서 네트워크의 인식 범위를 이용하여 극복하고, RFID 시스템을 통해 센서 네트워크의 객체 인식 능력을 제공하여 정확한 상황 인지를 할 수 있는 활용 방법을 제안한다.

* 본 연구는 정보통신부 및 정보통신연구진흥원의 대학 IT 연구센터 협력, 지원사업과 정보통신부의 유비쿼터스 컴퓨팅 및 네트워크 기반 기술 개발 포럼에 의해 사업의 연구 결과로 수행되었다.
3. RFID 시스템 기반한 무선 센서네트워크의 구성

3.1 무션 센서 네트워크와 RFID 시스템의 통합

리더와 단일 통에서만 인식이 가능한 RFID 태그는 리더와 열리 열려있었을 경우 태그를 없이 들이지 못하여 객체의 인식할 수 없는 문제를 유발한다. RFID 태그의 인식범위는 수동형 태그인 경우:"Iw 이내이고, 능동형 태그의 경우는 수신-수백 m 이기 때문에(4.5) 대상 지역이 이 범위보다 넓을 경우 고정된 위치에서 전체 객체에 대한 정보를 얻을 수 없다. 이러한 문제는 무선 센서 네트워크의 열리 통 통신을 이용해 해결할 수 있다. 센서 네트워크를 구성하는 노드에 RFID 태그를 얇는 기능을 부여하고, RFID 태그를 약간 들이고, 이를 열리 통 통신을 이용하여 목적지에 전달할 수 있다. 이는 무선 센서 네트워크의 열리 통에 있는 RFID 태그 정보를 온라인 시스템이나 사용자에게 거리에 대한 투명성을 제공하는 것이다 [6].

이러한 RFID 시스템을 지원하는 센서 네트워크는 상황 인지를 위한 범위 제약이 없는 RFID 인식 기능을 제공할 뿐만이 아니라, 센서 네트워크 고유 기능과의 유용한 병합 이상 시스템을 제공한다. 센서 네트워크가 사용할 경우, 신호 등의 환경 정보를 RFID 시스템의 객체 인식 기술과 함께 고려하면 새로운 상황 인지를 가능하게 한다. 예를 들면, 같은 원도우 속도를 가지는 환경도 존재하는 객체의 식별이 가능한 경우에 따라 다른 의미를 가질 것이며, 같은 식별이 가능한 경우에도 부가값이 높은 것이 아닌 것에 따라 그 의미가 달라질 것이다.

3.2 센서 노드와 RFID 리더의 결합

RFID 리더가 센서 노드와 결합되기 위해서는 기존의 센서 노드가 가지는 크기 제약, 효율적인 에너지 소비와 같은 특성을 충족시키려 한다. 특히, 기존의 RFID 리더는 에너지 자원의 제약을 많이 받지 않았기 때문에, 에너지 소비에서 문제가 될 수 있다.

RFID 리더의 크기는 태그와의 통신을 위한 안테나, 트랜시버와 이를 처리하기 위한 프로세서, 핸드 홀드 장비일 경우에는 베터리까지 포함하여 핸드 홀드 장비의 크기를 확장할 수 있으며, 이에 다수의 리더가 존재한다 [7, 8].

이렇게 크기가 작아진 리더는 센서 노드와 베터리 자원을 공유하기 때문에, 필요적으로 에너지 소모를 증가시킨다. 또한, 그림 4에서 보듯이 리더는 센서 노드의 다른 부분과 비교하여 에너지 소모가 매우 많다 [9].

이러한 에너지 소모 문제는 센서 네트워크의 동작(,in duty cycle)을 높은 리더의 응답을 조절이나 클러스터링 등의 기법을 통하여 해결할 수 있다. 그림 5는 클러스터 크기에 따른 센서 네트워크의 수용량을 보여주고 있다. 네트워크 수용률은 UC Berkeley에서 개발하고 Crossbow에서 제작한 MICAZ 모듈을 대상으로 하며, 에너지 자원은 2300 mAh 용량의 AA 베타리, 센서 노드의 동작을 1% 흐름상에서 계산하였다.

리더가 부착되지 않은 센서 네트워크는 13.49 개월의 수명을 가지는데 반하여, 모든 센서 노드가 리더의 기능을 한 경우 수명이 1.74 개월로 빨라진다. 그러나 다수의 센서 노드 중 하나의 노드만 리더의 기능을 하는 클러스터링 기법을 사용할 경우 네트워크의 수명을 8 개월 이상으로 향상할 수 있을음을 볼 수 있다. 센서 노드와 RFID 리더 결합의 예는 TAGSYS의 Medio S002 RFID 리더를 이용하여 실험을 수행하였다.

4. 지능성 상황 인지 시스템의 활용 시나리오 및 시뮬레이션
4.1 상황 인지와 인지된 컨텍스트의 흐름

RFID 태그는 리더로부터의 요청이 있을 경우, 자신의 태그 데이터를 리더에게 전송한다. 리더는 이제 들어온 RFID 태그 데이터를 센서 노드의 마이크로 컨트롤러에게 전송하고, 센서 노드는 이 데이터를 수집한 환경 정보와 함께 라우팅 프로토콜과 같은 통신 프로토콜을 이용하여 베이스 노드에게 전송한다. 이 때 효과적인 전송을 위하여 라우팅 알고리즘 같은 기법을 사용할 수 있다. 베이스 노드는 지능적인 상황 인지를 위하여 베이지안 네트워크를 사용하는 정보를 합쳐 필요한 정보를 가지고 있을 수 있으며, 이를 이용하여 사용자에게 적합한 서비스를 제공할 수 있다.

4.2 사나리오 및 시뮬레이션

RFID 태그를 이용한 상황 인지를 위한 네트워크는 다양한 객제의 정보가 포함된 환경 정보와 함께 라우팅 프로토콜과 같은 통신 프로토콜을 이용하여 베이스 노드에게 전송한다. 이 때 효과적인 전송을 위하여 라우팅 알고리즘 등의 기법을 사용할 수 있다. 베이스 노드는 지능적인 상황 인지를 위하여 베이지안 네트워크의 정보를 합쳐 필요한 정보를 가지고 있을 수 있으며, 이를 이용하여 사용자에게 적합한 서비스를 제공할 수 있다.

이와 같이 환경정보와 객제정보를 모두 포함된 서비스의 제공을 위한 시스템은 기반의 상황 인지 시스템을 구성한다. 제안 시스템에서는 센서 네트워크가 제공하는 환경 정보 컨텍스트를 통해 다양한 서비스의 제공을 할 수 있다. 이 두 컨텍스트를 통합하여 사용자에게 적합한 서비스를 제공할 수 있다. 이 시스템은 사용자의 행동 패턴을 학습하고 적합한 서비스를 제공할 수 있다. 이 시스템은 사용자의 행동 패턴을 학습하고 적합한 서비스를 제공할 수 있다.

5. 결론 및 향후 연구 계획

본 논문은 제안된 시스템의 활용성을 고려하여 상황 인지 시스템의 활용을 위한 시스템의 에너지 효율성을 고려하여 효과적인 라우팅 방법 및 RFID 시스템을 이용하여 정확한 상황 인지를 가능하게 하는 알고리즘과 테스트를 수행하는 연구를 계속해 나갈 것이다.

6. 참고문헌


