프로젝터 기반 증강 현실을 사용한 확장 가능한 인터페이스 개발

이승세^1 은창옥 한성한 유태수 이동훈
서세대학교 소프트웨어대학원
{ssiee, coyun, shhan, tsysn, dhl}@dongseo.ac.kr

Extensible Interface using Projector Based Augmented Reality
Seungse Lee^2, Changok Yun, Sanghun Han, Taesu Yun and Dong Hoon Lee
Graduate School of Software, Dongseo University

요 약
차세대 컴퓨터 환경에서의 프로젝터 기반 증강 현실 디스플레이 시스템은 일반적인 컴퓨터가 가지고 있는 공간상의 제한과 한계를 극복하고 발전하고 있다. 그러나 시스템 구축 시 여러 장비가 요구되며 비용이 높아지거나 주위 환경에 조화롭지 못하다는 단점을 지니고 있다. 본 논문에서는 최근 범용 그래픽 카드에
서 지원하는 뿔업 모니터 기능과 프로젝터를 이용하여 일반 모니터 환경을 실제계의 환경으로 확장할 수 있는 간단한 기법을 제안한다. 본 논문에서 제안하는 방법을 통해 컴퓨터로부터 실제계 환경으로 정보의
이동을 자연스럽게 할 수 있으며 실제계에 편재한 다양한 내선을 컴퓨터 인터페이스의 일부로 재구현하여 주위 환경에 적합한 환경을 확장 가능한 컴퓨터 공간을 구축할 수 있다.

1. 서론
최근 실시간 기상간의 혼합을 통해 현실을 증강시키는 증강현실(Augmented Reality) 기술과 실제계에 존재하는 사물 인터페이스는 일반적으로 사용하는 뿔업 모니터 인터페이스(Tangible Interface) 기술의 개발로 고전적인 컴퓨터가 가지고 있었던 인터페이스의 한계를 극복하기 위한 많은 노력들이 시도되고 있다. 그러나 이러한 기술들은 확장된 환경 구축을 위해 고비용과 기술이 요구되었고 특정 실감 환경을 빼앗는 복잡적인 공간에 이를 적용하기 위해서는 많은 한계점들이 가지고 있다.
본 논문에서는 일반적인 컴퓨터 환경에서 범용적으로 사용하고 있는 컴퓨터와 프로젝터를 활용하여 순결한 모니터 환경을 주위 환경에 확장하기 위한 시스템을 제
안한다.
확장 구축을 위해 특정한 공간이 노출되지 않아 일반적인 벽이나 장치에 정보를 디스플레이할 수 있는 새로운 환경이 요구되지 않도록 한다. 또한 범용 컴퓨터의 모니터 뿔업기능과 일반 LCD 프로젝터를 사용하여 여러 장비가 필요 없는 저비용 환경을 구축하고 일반 사물과 디지털 정보를 연결함으로써 주위 환경에 적합하고 자연스러운 방법을 사용하였다.
본 논문의 구성은 다음과 같다. 2장에서는 프로젝터 기반으로 구성된 증강 현실 관련 연구에 대해서 설명하고 3장에서는 본 논문에서 제시하는 확장 공간 인터페이스를 구성하기 위한 기술적 요소를 살펴본다. 4장에서 정한 본 논문에서 제시한 방법을 활용한 3가지 사례 연구에 대해 살펴보고 마지막으로 5장에서는 결론 및 향후

2. 관련 연구
차세대 컴퓨터 환경으로 소니(sony)에서 개발한 'Hyper Dragging'[1]은 실시간에만 모니터상의 작업들이 가상공
간된 데와이나 복잡한 공간 영역으로 확장하도록 하였다. 이 기술은 물리적 공간과 가상공간의 경계를 넘
어도되는 개념으로 두 공간이 서로 상호작용하는 인터페이스를 제공하여 확장된 인터페이스를 제공해 줄 수 있
다. 그러나 이러한 시스템을 구현하는데 많은 비용이 요구되며 특정한 장비나 장착부 디스플레이에 의하여 가상
공간의 제약을 받는 등의 사용의 제한을 제외하고 있다.
사이버스페이스에 실감성 및 사실성을 부여하여 가상 공간과 실제 공간 사이의 자연스럽고 간결한 연결을 가능케 하는 Large multi-projector walls[2], Steerable projected displays[3], Immersive environments[4,5], Intelligent presentation systems[6,7] 그리고 Remote-collaboration tools[8]과 같은 다양한 프로젝터 기반의 시스템들이 개발되었으나 아주 연구들 또한 고
사양의 하드웨어 장비를 요구하며 사용자의 특성을 고려하지 않고 확률화된 정보를 제공하거나 사용자에게 정보
수요자로서의 역할을 강조하는 한계점들을 지니고 있다.
또한 이러한 기존의 시스템은 사용자에게 제한된 공간상
에서 정보를 제공하고 사용자가 스스로 정보를 생성, 수정, 삭제 등을 할 수 없으며, 실제계에 존재하는 염치한 부분으로 공간으로 확장할 수 있다는 한계점을 지니고 있다.

3. 범용 확장 인터페이스 개발 기술 연구
본 논문에서는 간단하고 주위환경과 조화로운 범용 확장
3.3 임의 곡면에 대한 확장 인터페이스의 투영 보정

투영되는 실제 사물은 사물의 형태에 따라 복잡한 형태를 갖는다. 2차원 평면에서의 투영은 프로젝터의 형태가 주로平板에서 이루어지는 데로 간단한 보정이 가능하다. 그러나 투영이 3차원의 일치와 곡면 특성에 맞추는 보정을 위해서는 프로젝터 보정(calibration) 단계가 필요하다.

Raskar에 의해 Shaders Lamps[9]에서 제안된 이미지 보정 방법은 3차원 모델을 사용하여 프로젝터로 투사되는 정보를 정확하게 사물의 영역에 정합(registration)하기 위한 기술이다. 본 논문에서는 Raskar의 방법을 사용하여 프로젝터의 내부 및 외부 피라미트를 추정하고 구현하여 프로젝터의 피라미트를 활용하여 3차원 모델을 정확하게 위해서 임의의 3차원 곡면에 적합한 정보를 정합한다. 이 를 위해 먼저 3차원 모델과 현실의 동일 사물의 중요 점들(최소 6개 이상 \(n > 6 \))의 대응 관계를 입력하여 모델링한 데이터의 정확도를 입력한 점들의 관계에 대한 변환 행렬(\(P \))을 결정하고 식 (2)의 선형 해법을 통해 예측을 최소화하고 식 (3)의 최선형화를 거쳐 프로젝터의 내부 및 외부 피라미트를 추정한다. Raskar의 방법은 실제 사물의 3차원 모델을 적재하고 대응관계를 수작업으로 입력해야 하며 입력 후 사물의 위치가 고정되어야 한다는 단점이 있으나, 비해적 손쉽고 빠르게 정확한 프로젝터 보정이 가능하다는 장점이 있다.

\[
\begin{align*}
\overline{X}_i &= U X_i, \\
\overline{Y}_i &= T Y_i, \\
0 &= \left[w, x, y, z \right]^T P_1, \\
\min \sum_{i} d(\overline{X}_i, \overline{Y}_i)^2 \\
P &= T^{-1} \tilde{P} U.
\end{align*}
\]

4. 사례 연구

본 논문에서는 제안한 기법의 다양한 활용을 시도하기 위해 다음과 같은 3가지의 응용 시스템을 개발하였다.

4.1 디지털 증강 디스플레이

디지털 증강 디스플레이 시스템은 그림 2(a)와 같이 컴퓨터 사용 시 저장한 모니터 공간에 일치하는 형태를 발전하여 이것은 그림 2(b)와 같이 증강된 공간으로 정보를 보내고 가처분으로써 사용자가 할 수 있게 하는 컴퓨터를 증강된 공간을 확보하기 위한 시스템이다. 본 시스템을 통해 실제의 공간을 모니터 공간의 일부로 활용할 수 있으므로 보다 효율적인 공간 활용이 가능하다.
4.2 인터랙티브 메일 알림
메일 수신시 모니터 공간이 아닌 일반 실세계에서 정보를 제공함으로써 실세계와 컴퓨터 공간을 자연스럽게 확장할 수 있는 메일 알림 시스템을 개발하였다. 그림 3에서는 보의 위치와 같이 메일 수신 알림이 나타나 편지를 열어볼지로서 사용자는 직관적으로 메일이 있다는 것을 인지할 수 있다. 본 시스템은 보다 적극적인 측면에서 실세계와 컴퓨터 공간의 일부로 간주하고 실세계로부터 컴퓨터 공간으로 정보를 전달하는 개념을 표현하기 위한 시스템이다.

5. 결론 및 향후계제
본 논문에서는 최근 벤지 그래픽 카드에서 지원하는 스크롤 모니터 기능과 프로젝터를 이용하여 일반 모니터 환경을 실세계 환경으로 확장할 수 있는 손쉬운 기법을 제안하였다. 본 논문에서 제안하는 방법을 통해 컴퓨터로부터 실세계 환경으로 정보의 이동을 자연스럽게 할 수 있으며 실세계에 편재한 다양한 사물들 컴퓨터 인터페이스의 일부로 채택함으로써 주위 환경에 조화로운 확장 가능한 컴퓨터 공간을 구축할 수 있었다. 향후 계제로 실세계에 편재한 다양한 사물 중 보다 적극적으로 컴퓨터 인터페이스로 활용 가능한 사물에 대해 본 연구를 확장할 예정이다.

6. 참고 문헌