클러스터 구조의 센서 네트워크에서 효율적인 데이터 모음 기법

지재경, 박완
홍익대학교 컴퓨터공학과 실시간시스템 연구실
{kjeed@, rhanha@cs.hongik.ac.kr}

An Efficient Data Aggregation Method in Clustered Sensor Network
Jaekyung Jee, Rhan Ha
Department of Computer Engineering, Hong-lk University

요 약

배터리를 사용하여 정보의 처리와 센서 작동을 수행하는 무선 센서 네트워크의 문제 중 하나는 전원이 한계되어 효율적으로 사용될 수 있는 다른 기술들이 제안되고 있다. 이런 기술들 중 클래스터를 구성하되, 데이터 모음 기법을 수행하되 증폭된 데이터를 보내는 방법으로 신체적 통신으로 확대하여 전송을 해야 한다. 이러한 문제점을 해결하기 위해 본 논문에서는 클러스터 구조를 이용하는 센서 네트워크에서 각 클래스터의 클러스터 할당 정책을 방지할 경우 발생하는 증폭 데이터 처리 기법을 제안하였다. 제안하는 기법은 Meta-data를 사용할 수 있는 새로운 전체 교환으로 동일한 정보가 각 각 다른 클래스터에 전송되는 것을 방지하여 에너지 효율을 높일 수 있다. 또한 클래스터 내에서 발생하는 다른 정보들간을 통한 전송을 가능하게 하여 데이터 모음을 수행하는 기법을 제안한다. 설명을 통해 제안하는 알고리즘은 기본의 기법에 비하여 효율적인 전송과 에너지 소모 면에서 모두 효율적인 것을 확인할 수 있다.

1. 서론

무선 센서 네트워크는 넓은 지역이나 건물 등의 위에서 센서들이 를 사용하여 정보를 수집하고, 그 정보를 중앙의 기지 노드(Base Station or Sink)로 보내 정보를 수집한다. 센서 네트워크는 빠르게 사용하여 적절한 접근하기 어렵고, 크기가 넓기 때문에 관리가 어려운 지역의 환경을 모니터링 하거나, 또는 실시간에 응용, 보안, 확대 경고 등 계속적인 관리가 필요한 작업들을 수행하는데 이용되고 있다[1, 2].

센서 네트워크를 구성하는 노드들은 에너지원으로 배터리를 사용하기 때문에 배터리 용량을 모두 소모한 노드는 더 이상 정보의 감지 작업을 수행할 수 없다. 따라서 노드의 작동 시간을 결정하기 위해서는 재충전된 배터리 용량으로 발생하는 에너지의 고정 값에 대한 데이터를 수집한다. 일반적으로 센서 노드들의 노드 속성에 존재할 수 있는 능력에 고정된 값을 주는 것은 계산적으로 많은 노드들의 배터리를 고려하는 알고리즘에서는 복잡하게 되고, 따라서 노드의 재충전된 배터리를 탐색하는 것은 깊이 복잡하다. 데이터 노드 여러 로animations에 보유하고 있는 노드의 배터리를 탐색하는 것을 방지하기 위해 에너지 효율을 높이기 위해서는 정보가 전달되면 전송과 전송 데이터를 줄여 에너지 효율을 높일 수 있다. SPMS (Shortest Path Minded SPN)[7]은 SPN-Based 라우팅 알고리즘으로 SPN이라고 하는 Negotiation을 수행하여 라우팅을 진행한다. SPN과 마찬가지로 Meta-data를 교환하여 데이터의 필요 여부를 확인 후 실제 데이터 전송을 수행한다. 그러나 SPMS는 데이터 전송을 위해서 최소 경로의 전송을 구하기 위함으로 데이터 전송을 시작하기 때문에 단순히 point-to-point 방식을 이용하여 데이터 전송을 하므로 SPN 보다 적은 에너지소비가 줄어서 효율이 높을 수 있다. SPMS는 통신을 위해 가능한 전송을 하므로 에너지 효율과 보다 좋은 성능을 보여주었다. 데이터 모음(Data Aggregation) 기법은 실제 전송이 일어나기 전에 증폭된 데이터를 압축하고 하나의 패킷으로 만들어 전송하려 한다.データ를 경우 에너지 절약을 줄이고 많은 시간을 줄이기 위해서 비효율적인 데이터 전송을 방지한다. 본 논문에서는 이러한 전송을 방지하기 위하여 본 논문에 제안하는 알고리즘을 사용하였다. 2장에서는 본 논문의 목적과 관련된 연구들에 대하여 알아보고 하고, 3장에서는 구체적으로 본 논문에서 제안하는 클러스터 알고리즘을 제안하는 특징에 대하여 설명하고, 4장에서는 실험을 통하여 본 논문의 유용성을 증명하고 5장에서는 결과에 대하여 결론을 끝낸다.

2. 관련 연구

SPIN (Sensor Protocols for Information via Negotiation)[6]은 실제 데이터를 얻어 작업을 수행하기 전에 Meta-data를 미리 고려하여 실제 데이터 전송의 수행 여부를 결정한다. SPIN에서는 센서 네트워크에서 일어날 수 있는 모든 지점 정보를 지적하여 그 지점 정보의 패킷을 전송하여 보장한다. SPIN에서 지정하는 문제점으로는 메시지의 충돌을 방지하는 방법에 Imposion 문제, 센서 노드의 신호 범위 범위로 같은 지역을 신호로 교환하는 중복 전달되는 Overlap 문제, 버퍼들이 노드들의 에너지 상태에 따라 에너지 저감 및 메시지 중복전달 문제가 있다. 이 문제점을 해결하는 방법으로는 Meta-data를 이용하여 센서 네트워크에서 발생하는 별도 에너지의 전송을 줄이고 전송속도를 줄여 에너지 효율을 높일 수 있는 방법이 있다. SPMS (Shortest Path Minded SPN)[7]은 SPN-Based 라우팅 알고리즘으로 SPN이라고 하는 Negotiation을 수행하여 라우팅을 진행한다. SPN과 마찬가지로 Meta-data를 교환하여 데이터의 필요 여부를 확인 후 실제 데이터 전송을 수행한다. 그러나 SPMS는 데이터 전송을 위해서 최소 경로의 전송을 구하기 위함으로 데이터 전송을 시작하기 때문에 단순히 point-to-point 방식을 이용하여 데이터 전송을 하므로 SPN 보다 적은 에너지소비가 줄어서 효율이 높을 수 있다.
3. 중복 제거 알고리즘
3.1 클러스터 구성

3.2 중복 데이터 제거

Meta-data : A meta-data란 노드가 선언한 데이터의 간단한 요약(description)이다. 어떤 센서 노드에서 a를 실제 데이터로 인해 선언하는 경우, A의 meta-data는 a의 요약을 그대로 유지하도록 한다. 또한, 두 개의 다른 센서 데이터가 동일하다고 판단할 경우, 이러한 요약을 통해 수신하고 있는 노드의 수에 따라 변경된 메타데이터가 생성된다. 예를 들어, 내트워크에 들고 있는 모든 노드의 수에 따라 결정되는 최적의 p값과 최대 손실값을 나타낸다[4].

<table>
<thead>
<tr>
<th>노드 수</th>
<th>메타 데이터 가중치</th>
<th>최대 손실</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>0.1012</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>0.0792</td>
<td>4</td>
</tr>
<tr>
<td>1500</td>
<td>0.0688</td>
<td>3</td>
</tr>
<tr>
<td>2000</td>
<td>0.0622</td>
<td>3</td>
</tr>
</tbody>
</table>

3.3 데이터 모음

여기서 k는 클러스터 수를 나타내며, WT_1은 k번째의 Waiting time이다. 즉, WT_1에서의 Waiting time WT_1은 k의 수의 역수와 같으며, 이 값의 의미는 각 노드에서 메타데이터 전송을 위해 얼마나 많은 에너지를 소비하는지를 나타낸다. 즉, WT_1의 수가 적을수록 데이터 전송을 위한 에너지 비용이 적게 된다.

3.4 이론적 평가
이해 상황에서는 중복 데이터 제거 기법을 사용하였을 때 소모되는 에너지 값과 시간적 성능에 대하여 이론적으로 평가한다. 사용된 변수는 다음과 같다. D_k와 D_{k}는 실제 데이터와 Meta-data의 값이다. 여기서 k는 메타데이터의 수이고, k은 가장 낮은 에너지 클러스터 헤드를 통해 전송되는 메타데이터의 수를 나타내며, k은 클러스터 헤드의 수를 나타내고, k은 클러스터 헤드의 수를 나타낸다. 이와 같은 변수는 다음과 같다.

C_{Kdd}와 C_{Kdd}는 각 노드에서 메타데이터의 수에 따라 결정되는 메타데이터의 수를 나타내며, C_{Kdd}는 각 노드에서 메타데이터의 수에 따라 결정되는 메타데이터의 수를 나타낸다. 이와 같은 변수는 다음과 같다.

C_{Kdd}는 k개의 메타데이터의 수에 따라 결정되는 메타데이터의 수를 나타내며, C_{Kdd}는 k개의 메타데이터의 수에 따라 결정되는 메타데이터의 수를 나타낸다. 이와 같은 변수는 다음과 같다.

의 서로 다른 클러스터 헤드로 전송되는 비용이 된다. 다음으로 시간 지연이 더욱 중요하다. 본 논문에서는 Waiting time을 이용한 데이터 전송을 시도하기에 어떤 정도의 지연 이 발생하게 된다. 따라서 본 논문에서 기반을 두고 있는 SPIN과 SPMS의 지연을 비교하여 어느 정도 차이가 있는지 실험을 보고 한다. T_{sp}는 하나의 데이터를 전송하는데 소요되는 시간이고 T_{outAdv}와 T_{outDat}는 타이머 값이다. T_{psec}는 노드에서 데이터를 처리하는데 소요되는 시간이며, T_{sens}는 채널 정점을 지연으로서 n^2의 비례에서 증가한다. 여기서 n은 전송 범위 안에 있는 노드 수이다. A_n은 비례상수이고 n_1과 n_2는 도달할 수 있는 노드 수로서 각각 최대 전송 범위와 최소 전송 범위 가 되는 노드 수이다. T_{adv}는 받는 Leaf 노드에서 클러스터 헤드로 도달하는 시간을 나타낸다. Leaf 노드에서 클러스터 헤드는 k층만큼 들어가 있다. 본 논문에서 제안하는 알고리즘은 먼저 Leaf 노드에서 중복 데이터를 검출한 후에 Waiting time을 만족하는 시간에 Upstream 실험 노드로 데이터를 전송하게 된다. 우선 노드에서 노드로 전송하려는 클러스터의 피어 시간을 다음과 같다.

$T_{sens} = n_2^2 + T_{adv}$

Leaf 노드에서는 Meta-Data를 주고받아야 하기 때문에 ADV와 REP 메시지를 서로 전송하게 된다. 따라서 Leaf 노드에서 발생하는 시간 지연은 다음과 같다. $T_{adv} = n_2^2 + 2T_{sens} + (A + R + D)T_{sp} + T_{outAdv} + T_{outDat}$

Leaf 노드를 제외한 클러스터 헤드까지 k개의 노드들도 전송하는 시간 지연은 다음과 같다.

$T_{adv} = n_2^2 + 2T_{sens} + (A + R + D)T_{sp} + T_{outAdv} + T_{outDat}$

여기서 k층만큼 들어가 있는 클러스터 헤드로 전송되며 경과되는 총 시간은 다음과 같다.

$T_{med} = n_2^2 + (k + 1)G_{n_2} + (kD + A + R)T_{sp} + T_{outAdv} + T_{outDat}$

이제 T_{med}는 T_{sens}를 반복하여 보내는 때에 시간이 발생하는 경우 T_{med}를 이용하여 다음과 같이 계산한다.

$T_{med} = k(G_{n_2}^2 + DT_{sp} + T_{outAdv})$

SPMS는 T_{med}를 T_{sens}를 제외하기 때문에 시간으로는 SPIN에 비해 시간 지연이 발생하게 되는데 그 정도는 다음과 같다 [7].

여기에서 T_{med}는 한 번의 전송 과정을 가지고, T_{outAdv}는 노드가 ADV를 보내기 전까지의 시간 지연이며, T_{outAdv}는 Leaf 노드에서 전송되는 시간 지연이다.

4. 성능 평가

성능 평기는 전체 센서 네트워크에서 소모되는 에너지 측정을 비교해보도록 한다. 그리고 기존 알고리즘 비교하여 이 알고리즘의 시간 지연(Delay) 효과가 있는지 기존과도 비교하였다. 실험에 사용된 값을 $T_{med} = 0.05$, $T_{psec} = 0.02$, $A : R : D = 1 : 1 : 30$, $G = 0.01$, 그리고 $n_1 = 20$, $n_2 = 5$의 값을 갖는다. 에너지 측정에

이에 비해 해볼 때에는 중복 데이터 제거 기법을 사용했음을 경우와 사용하지 않은 경우에 대하여 에너지 소비에 대하여 실험하였다. [그림 1]에 나타나듯이 중복 데이터 제거 데이터 전송 횟수를 줄이고 더 적은 에너지소모를을 실현하여 적을 수 있었다.

시간 지연에 대한 실험에서는 중복 제거 기법과 일반 클러스터 이외에 클러스터 구조로 된 SPMS에 대한 실험도 추가되었다. [그

5. 결론

본 논문에서는 클러스터 기반을 이용하는 센서 네트워크에서 두 개 이상의 클러스터의 중복 측정이 발생 가능한 지연에서 수행하는 중복 데이터 제거 기법과 클러스터 내에서 수행할 수 있는 데이터 모음 기법에 대하여 제안하고 있다. 실험 결과 기존 알고리즘에 비하여 차지 않은 시간 지연으로 보다 적은 에너지 소모를 하는 효율적인 클러스터 구조를 제안하여 결과에 도달할 수 있는 클러스터의 지연이 발생함을

참고 문헌

