스토리지 네트워크에서 인-밴드 스토리지 네트워크 가상화

차보훈* 황종선
고려대학교 대학원 소프트웨어공학과
borongyee@korea.ac.kr, hwang@disys.korea.ac.kr.

Virtualization of In-Band Storage Network In Storage Network
Bo-Hoon Cha* Chong-Sun Hwang
Dept. Of Computer Science & Engineering, Korea University

요 약

블록 메니저는 아니라 RAID 시스템 또는 서버를 기반으로 하는 가상화 기술은 그 관리범위가 제한적이며 데이터 센터 전체를 대상으로 하는 스위칭 전위 구성을 필요하다. 같은 이유로 음성 스토리지 관리하는 비용은 관리되는 서버의 수에 비례하여 증가한다. 또한 데이터 센터 자체가 아닌 개별 서버의 요구사항에 초점을 맞추고 있다는 점에서 서버 중심적인 가상화 기술이라고 할 수 있다. 스토리지 네트워크를 기반으로 가상화 기술로 구현하는 경우, 관리비용과 데이터 센터 전체를 범위로 하는 관리 및 가상화를 통해 관리비용을 절감할 수 있다. 본 논문에서는 블록 스토리지를 가상화하는데 사용되는 네트워크 인프라스트럭처에 대해서 분석하고, 가상화 매개변수를 관리하는 경우에 따른 인-밴드 가상화에 대해서 연구, 분석 및 새로운 모듈을 제시하고 구현했다. 그리고 서버 중심적 가상화 기술과 성능 비교, 분석을 통하여 인-밴드 스토리지 네트워크 가상화 기술의 우수성을 나타낸다.

1. 서 론

RAID 시스템 또는 블록 메니저를 이용하여 스토리지 가상화 환경을 관리하는 경우, 개별 서버들의 요구사항을 정리하고 반영하기 위해 관리자는 서버로 하여금 종종 각 애플리케이션별로 응용, 성능, 가용성 요구수준을 점검해야 하며, 다른 서버들과 스토리지 사이 공유하는 애플리케이션에 적절한 품질의 스토리지 서비스를 제공하기 위한 일련의 조치를 수행해야 한다. 이렇게 스토리지를 서버 단위로 관리하는 경우, 관리비용은 데이터 센터의 서버 수에 비례하여 증가한다. 새로운 서버가 추가될 때마다 애플리케이션 관리자와 시스템 관리자 간의 협의를 거쳐야 하며, 또 시스템 관리자들은 애플리케이션의 논의를 통해 적절한 스토리지 분배방안을 결정해야 한다. 경우에 따라 이러한 비용은 데이터 센터의 규모가 커짐에 따라 가하급수적으로 증가할 수도 있다.

스토리지 네트워크는 스토리지 데이터 센터 전체를 범위로 하는 관리 및 가상화를 통해 관리비용을 절감할 수 있다. 또한 서로 다른 유형의 네트워크 스토리지 데이터를 논리적으로 조합할 수 있다는 점은 커다란 혜택으로 간주된다. 또한 지능화 된 스토리지 인프라스트럭처 컴퓨턴트를 이용하여 스토리지 관리의 범위를 전체 데이터 센터로 확장하는 것이 가능하며, 전체 데이터 센터의 스토리지 환경을 통합적으로 관리하기 위한 방안이 고려되기도 하고 이는 데이터 센터의 스토리지 환경을 통합적으로 관리하기 위한 방안이 고려되기도 하고 이는 데이터 센터의 스토리지 관리가 일정 시간 동안 프로파일을 유지하기 위한 방안이 고려되기도 하고 이는 데이터 센터의 스토리지 관리가 일정 시간 동안 프로파일을 유지하기 위한 방안이 고려되기도 한다.

본 논문의 구성은 다음과 같다. 2장에서는 관련연구로서 서버 중심적 스토리지 가상화 기술과, 네트워크 중심적 스토리지 가상화 기술 실험분석이다. 3장에서는 덜점을 보완한 인-밴드 스토리지 네트워크 기반 블록 가상화 모듈을 제시한다. 4장에서는 결론 및 향후 추가 연구가 필요한 부분에 대해 기술한다.

2. 관련 연구

2.1 서버 중심적 스토리지 가상화 기술.

[그림 1] 서버 중심적 스토리지 가상화

[그림 1] 1은 관리자에게 의해 개별적으로 관리되는 서버로 구성된 데이터 환경을 나타내고 있다. 관리자는 서버에서 실행 중인 각 애플리케이션별로 응용, 성능, 가용성 요구수준을 점검해야 하며, 다른 서버들과 스토리지 사이 공유하는 애플리케이션에 적절한 품질의 스토리지 서비스를 제공하기 위한 일련의 조치를 수행해야 한다. 이는 서버의 가상화 시스템의 구축에 따라 가하급수적으로 증가할 수도 있다.

- 구성 (configuration) : 필요한 응용, 성능 및 가용성 요구수준을 만족하는 이들에 의해 구성한다.
- 프로피저닝 (provisioning) : 구성된 이들에 필요한 일부를 가상화 가이드의 형태로 서버에 할당한다.

이렇게 서버 단위로 관리하는 경우, 새로운 서버가 추가될 때마다 애플리케이션 관리자와 시스템 관리자 간의 협의를 거쳐야 하며, 도 적절한 스토리지 분배방안을 결정해야 한다. 경우에 따라 이러한 비용은 데이터 센터의 규모가 커짐에 따라 가하급수적으로 증가할 수도 있다.

856
2.2 네트워크 중심적 스토리지 가상화 기술

[그림 2] 네트워크 중심적 스토리지 가상화

[그림 2]은 다수 스토리지 디바이스와 서버가 하나의 네트워크 구성을 공유하는 경우, 그 방법을 크게 달리진다.

 - 완전한 상호연결: 스토리지 네트워크가 갖는 가장 중요한 속성은, 데이터 센터의 모든 서버와 스토리지가 완벽하게 연결될 수 있다는 것이다.

 - 이중 중복 및 스토리지 디바이스의 지원: 서로 다른 유형의 네트워크 스토리지 디바이스를 놀리적으로 조합할 수 있다는 점은 커다란 혜택으로 간주된다.

- 가용성 인프라스트럭처: '가용성 인프라스트럭처'란 최종점(서버 또는 스토리지 디바이스)에 위치한 스토리지 관리기능을 네트워크 내부의 일정 시간에 이어서 주는 것이 가용성을 의미한다.

2.3 볼록 스토리지 가상화의 핵심 컴퓨트넌트

[그림 3] 볼록 스토리지 가상화의 핵심 컴퓨트넌트

[그림 3]은 가상화 디바이스를 구성하는 핵심 컴퓨트넌트를 보여주고 있다. 볼록 스토리지 가상화에는 두 가지 핵심 구성요소[1][3]가 존재한다. 볼록 에러레이스와 논리적 볼록 에러레이스간의 변환은 그 첫 번째 이고, 가상화 메개변수(디바이스, 에러레이스, 볼록 영역, 'stripe depth' 등)의 관리가 두 번째이다.

디스크 어레이의 볼록 에러레이스 변환 작업은 타임 보호와 예 계변수를 기반으로 알고리즘 방식으로 구현된다.

2.4 인-밴드 가상화

인-밴드 가상화는, 가상화 메개변수가 영구적으로 저장되고 관리되는 기능이 구현되는 위치를 기준으로 구분된다.

I/O 요청의 볼록 에러레이스 변환을 수행하는 개체(볼록 메니지 또는 네트워크 가상화 컨트롤 스토리지)가 가상화 메개변수를 함께 관리하는 경우, 이를 인-밴드 가상화 (in-band virtualization)[1][2]라 부른다.

3. 인-밴드 스토리지 네트워크 가상화

3.1 인-밴드 스토리지 네트워크 가상화

인-밴드 스토리지 가상화란 볼록 에러레이스 변환을 수행하는 개체와 볼록 에러레이스 변환을 위한 메개변수를 관리하는 개체가 동일한 경우를 의미한다.

인-밴드 가상화는 볼록 메니지가 스토리지 플랫폼의 추가, 또는 서버의 추가를 통해 확장될 수 있다.

3.2 인-밴드 스토리지 네트워크 가상화 장점

- 인-밴드 가상화는 서버 기반 클로버 메니지와 RAID 시스템이 갖는 장점을 고루 취하고 있다고 할 수 있다. 인-밴드 가상화 장비는 볼록 메니지와 마찬가지로 운영체제의 I/O 드라이버를 이용하여 스토리지에서 접근한다.

- 운영체계가 지원하는 물리적/가상적 스토리지 디바이스의 범위는 RAID 시스템과 비교했을 때 폭이 넓고, 다양한 종류의 스토리지를 지원하는 것이 가능하다.

- 인-밴드 가상화 장점은 보안적인 관점에서도 뛰어나다. 가상화 컴포넌트(또는 I/O와 관련된 다른 소프트웨어)의 버그로 인해, 특정 데이터 복잡이 전혀 관리되지 않은 서버에 던져 썩어지거나 손상될 가능성은 발생하지 않다. 인-밴드 가상화의 경우, 가상화 장비가 모든 디바이스와 메모리와의 경로 관리에 맡겨질 수 있어 원본 문제가 없다.

- 인-밴드 가상화 장비는 또는 스토리지 네트워크 조합 또는 RAID 시스템 LUN 가장자리를 사용하여 서버와 스토리지에 연결을 가상화하거나, RAID의 구조를 사용하여 데이터의 성능, 안전성을 요구하는 것도 가능하다.

3.3 인-밴드 스토리지 네트워크 가상화 장점

- 안정성 (robustness) : 가상화 장비에 장애가 발생하는 경우 전체 스토리지에 대한 엑세스가 차단되고, 데이터 셀트의 가동이 안정적으로 유지될 수 있다.

- 확장성: 관리할 수 있는 물리적 대용량에 최대한의 범위가 적용된다. 새로운 네트워크를 구성하는 많은 백에 있다.

3.4 제한하는 인-밴드 스토리지 네트워크 가상화 볼록 가상화

3.4.1 안정성을 보반한 인-밴드 스토리지 네트워크 가상화

[그림 4] 인-밴드 스토리지 네트워크 가상화 장비

인-밴드 가상화는 수행하는 디바이스를 서버와 스토리지 사
이에 추가하여 안정성을 보장하는 요소를 제시한다.

인-밴드 가상화를 수행하는 디바이스는 SAN 어플리케이스 (SAN appliance), 가상화 엔진(virtualization engine), 가상화 어플리케이션(virtualization appliance) 등의 다양한 이름으로 불린다[4]. [그림 4]를 통해 알 수 있듯, 인-밴드 가상화 어플리
케이스가 포함하는 시스템은 스토리지 양상의 추가, 또는 서버의 추가를 통해 확장할 수 있다. [이때 스토리지 용량과 서버의 수는 서로 독립적이다.] [그림 4]에는 두 개의 인-밴드 가상화 어플리케이스가 구성되어 있으며, 두 장비 모두 같은 스토리지 디바이
스, 같은 클라이언트에 연결되어 있다.

다음의 클러스터 구성방법을 적용하여 인-밴드 스토리지 네트워크 가상화의 안정성을 보장하는 클러스터의 동작원리이다.

[그림 5] 멀티-클라이언트 클러스터 별도 메니저

[그림 5]의 메타데이터에 대한 모든 변경작업(세로운 가상 디바이스의 생성, 가상 디바이스의 크기 변경, 여러 복리 등)은 하나의 블록 메니저 인스턴스에 의해 수행된다. 단일 마스터 서버 (master server)가 가상화 메타 데이터에 대한 변경 작업을 전담
하며, 다른 서버들은 슬레이브(slave)로 동작하면서 데이터에 대
한 읽기/쓰기 작업을 수행한다. 메타데이터를 업데이트해야 할
물건이 있는 경우, 슬레이브 서버는 마스터에 요청을 전달하고 작
업이 완료되기를 기다린다. 즉 메타데이터의 안정성과 보안성을
보장하기 위한 목적으로 적용하였다.

3.4.2 확장성을 보장한 인-밴드 스토리지 네트워크 가상화.

[그림 6] 인-밴드 스토리지 네트워크 가상화

또 다른 관점에서 바라보면 인-밴드 스토리지 가상화를 제시하고
자 한다. [그림 6]를 통해 가상화 장비와 다른 시스템 캠퍼포트가
갖는 관계를 강조하여, 중요한 예 가지 사실을 추론할 수 있다.
첫 번째, 서버 기반 블록 메니저와 마찬가지로, 인-밴드 가상화
장비는 모든 유형의 스토리지를 가상화할 수 있다.
두 번째, 여러 디바이스의 스토리지 용량을 조합하여 하나의 어
래를 구성하는 것도 가능하다.

세 번째, 인-밴드 가상화 장비에 의해 구성된 어래리를 파티션
(partition)하여 분할할 수도 있다.

[그림 6]을 통해 논의되어야 할 가장 중요한 사실은, 인-밴드
네트워크 스토리지 가상화의 관리방법이 데이터센터 전자로까지
확장될 수 있다는 점이다. 스토리지 네트워크를 통해 연결된 모든
스토리지 디바이스는 가상화 될 수 있다.

서버의 경우 별도의 스프로세스 캠퍼포트가 불필요하므로 서버
기반 가상화의 경우보다 한층 유용하게 확장될 수 있다.

3.5 성능 분석

스토리지 저장관리시스템의 성능 비교분석은 전문 평가기관
인 Gartner Group와 WithSnowView 분석자료를 중심으로 살
펴보고자 한다.

Gartner Group[6]에
서 조사한 저장관리시스템
의 가격, 서버자원,
특성, 기능, 성능, 제품
성, 확장성 성과에서 성
능분석이 [그림 7]과
같다. 종합적인 수행 능
력측면에서 인-밴드 가
상화 수행디바이스를 적용한 HP(Hewlett Packard)의 XPS12
와 HDS(Hitachi Data System)의 9900 제품이 서버중심 DAS
(Direct Attached Storage) 구성의 EMC 8000과 HDS 7700E
보다 우수한 성능을 보였다.

4. 결론 및 향후 과제.

본 논문에서는 스토리지 네트워크의 연결성의 용이성과 기기
종과의 호환과 지능형 장비의 구현에 무엇이든 나는 장점을 이용,
네트워크 기반의 스토리지 가상화 기술의 인-밴드 가상화 기술
을 적용하여 블록 가상화를 구현해 보았고, 인-밴드 가상화 기
술의 안정성 또는 가용성의 문제가 장점으로, 이러한 문
제를 보완하기 위해 인-밴드 가상화 장비의 클러스터링의 적용
및 구현에 대해서 연구하였다. 향후 과제는 인-밴드 가상화 장
비의 문제점인 I/O 경로의 복잡성을 단순화하고, I/O 처리시간
의 단축을 위해 연구 중이다.

참고문헌
[5] http://www.emediamagine.com [2003.5.7]
[7] http://www.emediamagine.com [2003.5.7]
[8] http://www.emediamagine.com [2003.5.7]
[9] http://www.emediamagine.com [2003.5.7]
[10] http://www.emediamagine.com [2003.5.7]