모바일 환경을 이용한 정보 시스템의 구현

이정기* · 신영숙** · 안성수** · 이준*
*조선대학교 컴퓨터공학과
**동신대학교 컴퓨터과

Information System Implementation of Mobile Environment Use

Jeong-Gi Lee* · Myung-Suk Shin* · Seong-Soo Ahn** · Joon Lee*
*Dept. of Computer Engineering, Chosun Univ.
**Dept. of Computer, Dongshin Univ.

요 약
P2P 환경에서의 파일 공유 방식은 클라이언트/서버 방식보다 더욱 빠른 속도의 서버를 사용하지 않고 클라이언트 컴퓨터들만을 사용하여 자료의 공유 및 관리와 분산식이다. 이러한 이유로 대중매체의 서버를 사용하는 클라이언트/서버 방식에서 발생하는 인건, 물리적 자원의 낭비를 최소화 할 수 있다. 또한 사용자의 수가 늘어날수록 신뢰성, 안정성의 성과가 높아지는 등의 혜택을 제공한다. 이러한 이유로 여행을 많이 사용하는 사람들이 P2P에 관심을 받게 되어, 또한 현재 고급성장하고 있는 모바일 기술이 ebenfalls P2P를 이용한 연구들이 활발하게 진행되고 있다.
모바일 P2P 서비스의 증가 여부. 서버에 접근하고 있는 모바일 클라이언트에서 다른 모바일 클라이언트로 다양한 정보 및 데이터를 전송하는 방식으로, 종래의 P2P 개념은 모바일 기반으로 확장된 것이다. 본 연구에서는 모바일 P2P 서비스의 가능성을 논의하고, 제3자의 환경 및 분석을 위한 프로그램에 응용하였다.

1. 서 론
인터넷은 한 컴퓨터에서 다른 컴퓨터 혹은 컴퓨터들의 네트워크를 통해서 컴퓨터의 정보를 전달하고자 하는 필요에 의해 발전되었다. 초기의 인터넷은 단말기를 통해 데이터를 접근 할 수 있도록 해 주는 소규모의 컴퓨터들로 구성된, 규모가 열려 크게 증가한 네트워크다. 정책적으로 이 개념은 무한한 기능성을 얻었고, 인터넷은 전 세계를 연결하고 사용자들이 정보를 공유, 접근 그리고 자유롭게 통신할 수 있는 수백만의 컴퓨터들을 포함하는 글로벌 네트워크로 발전했다. 그러나 최근 들어 인터넷은 새로운 도약기를 맞이하고 있다. 바로 웹정보 네트워크의 필요성이 대두되고 있는 것이다. 그래서 인터넷의 e-Commerce로 알려져 왔다. m-Commerce는 온라인 상품을 복용적으로 사용되고 있다. m-Commerce는 모바일 전화의 모바일 애플리케이션을 사용하여, 무선으로 여러 가지 형태를 할 수 있는 능력을 확장한다. m-Commerce는 개인 소득 수준과 같은 예를 들어, 정보를 할 수 있는 능력을 확장한다. m-Commerce는 개인 소득 수준과 같은 특성을 이용하여 업계의 도움으로, 형식의 주제에 따라 일반 개인 소비자 기반의 m-Commerce와 사업체 기반의 m-Commerce로 구분한다. 특히 오늘날 사업체 기반의 m-Commerce를 주도하고 있는 모바일 SFA(Sales Force Automation)로 보험회사와 제조 및 무

1-1. 모바일 Peer-to-Peer

1-2. JXME
JXTA의 형태와 유연성은 복잡성이라는 상당한 대가를 치르고 있어야 한다. JXTA 피어는 같은 데스크를 관리하고 XML 소켓 레이어에서 메시지를 처리한다. 그와 같은 피
제32회 추계학술발표회 논문집 Vol. 32, No.2(1)

아는 너무나 복잡해서 대부분의 모바일 디바이스 상에서 실행할 수 없다. 게다가, XML이나 원래의 소켓 지 원은 단순 J2ME/MIDP 버전의 일부이다. 모바일 P2P 사용자들에게 JXTA 네트워크를 가능하게 하려면 모바일 디바이스용 JXTA API가 필요하다[5]. JXME 프로젝트는 JXTA API를 CLDC와 MIDP 플랫폼에 제공하는 것을 목표로 하고 있다. 이것은 Personal Profile 같은 J2ME 프로파일에도 사용된다.

JXME는 릴레이를 사용하여 경량의 모바일 피어들을 나머지 JXTA 네트워크에 연결한다. 릴레이 자체로는 항상 JXTA 피어로서 파이프, 골프, 피어 그룹 서비스를 핸들링할 수 있다. 모바일 피어는 HTTP를 통한 바이어러 반응을 통해 릴레이들과 통신한다. 이때 JXTA Binary Message 포맷에 순응하는 메시지를 사용한다. 릴레이는 모바일 피어들에게 많은 피어 서비스를 제공합니다.

그림 2. JXME 아키텍처

- 릴레이는 별도의 광고를 걸려내고 그 광고들을 없애 대역폭을 저장한다.
- 릴레이는 메시지를 모바일 피어들에 라우팅한다.
- 릴레이는 JXTA XML 포맷에서 JXTA Binary Message 포맷으로 메시지를 변환한다. 그 변환도 수행한다. 모바일 피어와 일상 피어들 간 상호작용성을 위해서이다.
- 릴레이는 모바일 피어를 대신하여 포사이드로 작동한다. 릴레이는 다른 피어와의 피어와 인터랙션 및 그룹 서비스를 사용한다.

3. 시스템 구현환경 및 설계

본 연구에서 구현한 영남정보 제공 Application 이들 웨어의 기능은 <표 1>과 같다.

<table>
<thead>
<tr>
<th>사용자 기능</th>
<th>학위 기능</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>기본 사용자 정보</td>
<td>생별, 연령, 재배적물 별로 사용자 정보를 요약하는 기능</td>
<td></td>
</tr>
<tr>
<td>프로필</td>
<td>설정 구역 및 재배적물 별로 사용자 정보를 요약하는 기능</td>
<td></td>
</tr>
<tr>
<td>사용자</td>
<td>특성 분석</td>
<td>사용자 그룹별 특성을 분석하는 기능</td>
</tr>
<tr>
<td>분석</td>
<td>특성 분석을 토대로 사용자를 분류하는 기능</td>
<td></td>
</tr>
<tr>
<td>재배적물</td>
<td>병출처</td>
<td>병출처 관련 정보를 총괄 저장 및 서비스하는 기능</td>
</tr>
<tr>
<td></td>
<td>관련 정보</td>
<td>관련 정보를 총괄 저장 및 전자서비스하는 기능</td>
</tr>
<tr>
<td>기반</td>
<td>영남 이동에 관련한 여러 가지 기반 정보</td>
<td></td>
</tr>
</tbody>
</table>

표 1. 미들웨어 기능표

클라우드의 기능은 재배관 정보의 입력 및 검색, 영남 정보 검색등의 기능을 제공한다. 시스템 전체 아키텍처는 그림 3과 같다.

그림 3. 시스템 기본아키텍처

3-1 피어 식별에 관한 설계
피어는 스스로, 또는 다른 피어와 함께 서비스를 제공할 수 있다. 서비스 피어는 서비스 공지를 발행하여 서비스를 제공한다는 사실을 전파한다.

다른 피어는 그 때 이 서비스를 발견하고 이용할 수 있다. 각각의 서비스는 그 서비스의 어떤 내용인지 보여주는 정해진 이름의 패턴과 서비스 키워드로 구성된 총정 ID와 이름을 가지고 있다. 각 성숙에 해당하는 공지는 고유의 ID를 가지고 있으며 다른 항목의 피어가 공지를 받고 피어를 식별할 수 있는 것은 JXTA UUID식 벨코드가 필요하다. 실제 피어 및 피어 관리 속성 식별을 위한 공지는 JXTA API에서 지원한다. 각각의 공지는 위에서 설명한 바와 같이 세목자를 이용해 주간에 있는 평가자가 자신의 영변사항을 충치시켜 피어 식별을 용이하게 할 수 있다.

자료공유의 설계
JXTA는 파일공유방식으로 두 가지 서비스를 제공하고 있다. 첫 번째 방식은 Codats이다. Codats는 고유의 ID에 의해 식별되는 JXTA 네트워크상의 개체의 바이어러 정보이다. Codats는 JXTA 플랫폼에 의해 구현하게 구현되더라도 사용할 수 있다. Codats는 자신이 소유한 데이터를 표시하는 문서를 가지고 있다. 두 번째 방식은 CMS(Content Manager
제32회 추계학술발표회 논문집 Vol. 32, No. 2(1)

Service)이다. CMS는 JXTA에플리케이션의 하나의 피어 그룹 안에서 컨텐츠를 공유하고 회수(retrieve)할 수 있게 한다. 공유된 컨텐츠의 각각의 항목은 고유의 컨텐츠 ID와 컨텐츠의 이름, 길이, MIME 형식, 그리고 설명과 같은 메타정보에 관한 메타정보(metal- information)를 제공하는 컨텐츠 공지에 의해 표현된다. 또한 CMS는 피어들 사이에 자료를 전송하기 위해서 JXTA 피어에 기반한 프로토콜을 제공한다. 몇몇 다른 P2P시스템과는 달리, CMS를 운용하는 피어는 컨텐츠를 교환하기 위해 HTTP프로토콜을 사용하지 않아도 된다. 본 연구에서는 CMS를 이용하여 자료의 등록 및 전송을 처리할 것이 다.

4. 결론

P2P환경에서는 파일공유방식은 PC(클라이언트)에 있는 파일들을 한 서버에 올려놓고 그 파일들을 관리하는 클라이언트/서버 방식에서의 갈라진 서버를 사용하지 않고 클라이언트 컴퓨터들만을 사용하여 자료의 공유 및 관리를 분산형으로 인해 대용량서비스를 구현함으로써 발생하는 인적, 물적자원의 낭비를 최소화 할 수 있을 것이다. 또한 사용자의 수가 늘어날수록 연산, 컴퓨팅의 성과가 늘어나는 등의 해택을 제공한다.

본 논문의 가장 주요한 다섯 점은 다음과 같다. 기존의 유선망에서 사용하던 P2P를 무선망으로 확장시키게 구축하였으며, 여기에 JXTA는 SunMicrosystems의 오픈 프로토콜 인터페이스를 바탕으로 하여 작성하고, 클라이언트 프로그램은 Microsoft.Net으로 구현하였다.

본 연구는 비즈니스 애플리케이션에서 도입하기 위해 P2P기반의 모바일 시스템을 설계 및 구현함으로써 이를 인해 얻을 수 있는 장점 및 해택을 알아보고 여러 가지 시나리오들을 도출했다는 점에서 의미가 있으며 다음과 같은 한계점을 가지고 있다.

첫째, 아직까지 무선인터넷 판매의 정착한 표준이 만들어지지 않은 상태에서 SUN에서 진행하는 프로젝트인 JXTA를 이용하여 개발된 시스템이므로 향후 표준이 제정될 경우에 이에 맞춰서 시스템을 재구성해야 할 필요성이 있다. 둘째, 하나의 네트워크 안에서 자료공유의 갑시 및 관할부여 등의 관리도들이 있어야 한다. 현재의 시스템은 관할부여 가능성이 존재하지 않아 이 시스템의 네트워크에 참여한 모든 피어들이 자유롭게 공유하게 되었다. 향후 연구에서는 관리모듈을 개발하여 보다 세밀한 자료공유를 할 수 있도록 해야 한다.

[참고문헌]

<http://www.jxtakorea.com>