Maximally repeated sub-patterns of a point set

Véronique Cortier
Xavier Goaoc
Mira Lee
Hyeon-Suk Na

INRIA (France)
INRIA (France)
KAIST
Soongsil Univ.

We answer a question raised by P. Brass on the number of maximally repeated sub-patterns in a set of \(n \) points in \(\mathbb{R}^d \). We show that this number, which was conjectured to be polynomial, is in fact \(\Theta(2^{n^2}) \) in the worst case, regardless of the dimension \(d \).

1. Introduction

Let \(S \) be a set of \(n \) points in \(\mathbb{R}^d \). A sub-pattern, i.e. a subset, of \(S \) is repeated if it can be translated to another subset of \(S \). A sub-pattern \(P \subseteq S \) is maximally repeated if for any subset \(Q \subseteq S \) there exists a translation that maps \(P \) to a subset of \(S \) without mapping \(Q \) to a subset of \(S \). In other words, a pattern is maximally repeated if it cannot be extended without losing at least one of its occurrences.

Maximally repeated sub-patterns (MRSP for short) originated from the field of pattern matching to solve the following problem: given two point sets \(X \) and \(Y \), can \(Y \) be translated to a subset of \(X \)? P. Brass [Theorem 3 in [1]] gave an algorithm that answer such queries in time \(O(|Y| \log |X|) \) whose preprocessing time depends on the number of distinct MRSP of \(X \), where two MRSP are distinct if they are not equal up to a translation. A natural question is thus to give a theoretical bound on this number of MRSP in order to provide an upper bound on the time requirement of that algorithm. This number was conjectured \([1] \) or page 267 in [2]) to be \(O(n^d) \) where \(d \) is the dimension in which the point set is embedded.

In this note we show that the number of MRSP of a set of \(n \) points is actually \(\Theta(2^{n^2}) \) in the worst case, which shows that finding sub-patterns via this approach may lead to exponential running time in the worst-case. Our proof is based on combinatorial rather than geometrical properties of the point set, which explains that the bound is independent of the dimension \(d \) in which the points are considered.

2. Lower and Upper bounds

Let us first introduce some terminology. Given \(P \subseteq \mathbb{R}^d \) and \(t \in \mathbb{R}^d \), the translation of \(P \) by \(t \), denoted \(P + t \), is the set \(\{x + t \mid x \in P\} \). A subset \(P \subseteq S \) is a repeated sub-pattern if there exists a translation \(t \neq 0 \) such that \(P + t \subseteq S \). A subset \(P \subseteq S \) is a maximally repeated sub-pattern (MRSP) if, in addition, for any subset \(Q \) such that \(P \subseteq Q \subseteq S \) there exists a translation \(t \) such that \(P + t \subseteq S \) and \(Q + t \not\subseteq S \). Two MRSP are distinct if they are not

1) This work was supported by the Korea Research Foundation Grant. (KRF-2004-000-10004-0)
2.1. Lower bound

We build our example on a 1-dimensional grid which can, of course, be considered as embedded in \mathbb{R}^d for any $d \geq 1$. Let k be an integer, G_k denotes the set of integers $\{1, \ldots, k\}$ and $S_k = G_k \cup (G_k + k + 1)$, that is two copies of G_k separated by a gap of one point at $k+1$.

\[
\begin{array}{c|c}
G_k & G_k + (k + 1) \\
\hline
\cdots & \cdots \\
S_k & \\
\end{array}
\]

그림 1: Example for Lower Bound 2^{k-1}

Lemma 1

The set S_k has 2^{k-1} distinct MRSP.

Proof.

We show that any subset $P \subseteq G_k$ is a MRSP by arguing that for any point $p^* \in S_k / P$, one of the translations that keeps P in S_k sends p^* either to $\{k+1\}$ or outside of S_k. Indeed, let $Q \subseteq S_k$ be a proper superset of P and $t \in Q / P$. If $t \geq k + 2$ then $P + (k + 1) \subseteq S_k$ and $Q + (k + 1) \nsubseteq S_k$.

If $t \leq k$ then $P + (k + 1 - t) \subseteq S_k$ and $Q + (k + 1 - t) \nsubseteq S_k$. This proves that any subset $P \subseteq G_k$ is a MRSP of S_k. No translation can map a subset of G_k that contains 1 to another subset of G_k that contains 1. Therefore, at least 2^{k-1} of the subsets of G_k are distinct MRSP.

2.2 Upper bound

Let $S = \{a_1, \ldots, a_n\} \subseteq \mathbb{R}^d$ be a set of n points. We consider the set of translations T defined by

$$T = S - S = \{x - y \mid (x, y) \in S \times S\}$$

Both the points in S and the vectors in T are ordered lexicographically, as vectors of n real numbers. Let A denote the family of all first occurrences of subsets of S that are MRSP. By “first” we mean that a MRSP P is in A if and only if no translation $t < 0$ satisfies $P + t \subseteq S$. That is, we choose one representative of each equivalence class of MRSP under translation. The following function maps each pattern to its set of translations:

$$\phi: \quad 2^S \to 2^T$$

$$P \mapsto \{t \in T : P + t \subseteq S\}$$

For $1 \leq i \leq j \leq n$, let

$$A_{ij} = \{P \in A : \{a_i, a_j\} \subseteq P \subseteq \{a_i, \ldots, a_j\}\}$$

be the set of all occurrences of MRSP spanning the range $\{a_i, \ldots, a_j\}$ and

$$T_{ij} = \{t \in T : t \geq 0, \{a_i, a_j\} \subseteq S \setminus (S - t)\}$$

be the set of all non-negative translations compatible with a_i and a_j. We can now prove our upper bound.

Lemma 2

A set of n points has at most $16 \cdot 2^{n^2}$ distinct MRSP.

Proof.

Let P_1 and P_2 be two MRSP such that $\phi(P_1) = \phi(P_2)$. Then $\phi(P_1 \cup P_2) = \phi(P_1) = \phi(P_2)$ which leads to $P_1 \cup P_2 = P_1$, since P_1 is a MRSP, and $P_1 \cup P_2 = P_1$, as P_2 is also a MRSP. Thus, ϕ defines an injection from A on the subsets of T. If $P \in A_{ij}$ then $\phi(P) \subseteq T_{ij}$ and ϕ induces an injection from A_{ij} on the subsets of T_{ij}. Hence, $A_{ij} \leq 2^{|T_{ij}|}$.

If $t \in T_{ij} \setminus \{0\}$ then $t > 0$ and $a_i + t = a_j$ with $y > j$. Hence, $|T_{ij} \setminus \{0\}| \leq n - j$. It follows that

$$|A_{ij}| \leq 2^{n-j} - 1$$

As any MRSP in A_{ij} corresponds to a subset of
\(|i + 1, \ldots, j - 1\), we also have that
\[|A_u| \leq 2^{j - i - 1}.\]

Note that \(A_u\) is empty for \(i \geq 2\) and \(A_{i_1}\) is a singleton. We can now write
\[|A| \leq 1 + \sum_{i=1}^{n} \sum_{j=i+1}^{n} 2^{\min(n-j, j-i-1)} \]

Splitting the sum at \(j = \frac{n + i}{2} + 1\), we get
\[|A| \leq 1 + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{\frac{n + i}{2}} 2^{j - i - 1} = 1 + 2 \sum_{i=1}^{n} 2^{\frac{n-i}{2} + 1} \]

\[\leq 1 + 8 \sum_{i=0}^{n} 2^{i} \leq 16 \cdot 2^{n/2}. \]

\[\text{[Reference]} \]

그림 2. Bounding \(|T_u|\) in 1-dimensional case; the same reasoning holds in \(\mathbb{R}^d\) thanks to the total ordering.