개인화된 유비쿼터스 서비스 제공을 위한
서비스 선택 방법 및 기반구조 설계 구현

박정규* 이글해
한국항공대학교 컴퓨터공학과
{fcopark*, khee}@hau.ac.kr

Design and Implementation of Service Selection Mechanism and Infrastructure for Personalized Ubiquitous Service Provision
Jeongkyu Park*, Keung Hae Lee
Department of Computer Engineering, Hankuk Aviation University

요 약
유비쿼터스 개념의 등장으로 사용자가 언제 어디서도 자신이 필요로 하는 서비스를 쉽게 이용할 수 있는 환경을 구축하기 위한 연구는 활발히 진행되고 있다. 이와 같은 유비쿼터스 환경의 서비스들의 대부분은 장소, 사물, 사람 등과 같은 물리공간의 개체가 허구적인 서비스공간에 표현됨으로써 생성되며, 사용자가 이를 통해 물리계체의 정보 및 그 개체에서 제공하는 기능을 관리하게 이용할 수 있게 하는 방향으로 연구가 개발되고 있다. 하지만 이를 유비쿼터스 환경 구축하는 것은 아니다. 사용자를 위한 각종 서비스의 공급자로는 오히려 서비스 사용자가 제공/관리가 이를 이용하고 관리하게 하는 환경을 이기할 수 있다. 이를 위해하기 위해서 사용자는 자신의 상태에 따라 유용하고 가용한 서비스를 선택적으로 제공받아 이용할 수 있게 한다. 우리는 이를 위해 다양한 해결 방안으로 "local area"에 존재하는 유비쿼터스 서비스를 효과적으로 지원하고 사용자가 이를 관리하게 이용할 수 있도록 하는 Personal Kiosk (PK) 시스템 및 기반구조를 설계 구현하였다. 본 논문에서는 local area PK 환경을 구축에 필요한 세부 이슈 중 특정 사용자의 환경정보를 기반으로 유용한 정보를 선택하는 방법을 제안하고 이를 기반으로 구현한 PK 시스템 및 기반구조를 소개한다.

1. 서 례
유비쿼터스 컴퓨팅의 등장으로 기존 서비스 제공환경의 한계를 극복한 새로운 개념의 서비스 환경을 구축하기 위한 연구가 활발하게 진행되고 있다. 이와 같은 유비쿼터스 환경은 대부분 물리공간과 서비스공간이 연동하는 형태로 이루어진다. 즉, 장소, 사람, 사물 등의 다양한 물리계체들이 사이버공간에 표현되며 사용자가 언제, 어디서, 어떻게 이를 관리하게 이용할 수 있게 함으로써 유비쿼터스 서비스 환경을 구축하고 있다[1]. 향후 이러한 서비스들이 현실화되면 인간의 생활환경은 다양한 서비스들로 인해 보다 풍富하게 될 것이다. 하지만 이러한 환경의 변화는 서비스의 점약도가 그 수가 많아지면 이를 선택, 이용하는데 오히려 불편을 초래할 수 있다. 이러한 문제를 해결하기 위해서는 다양한 형태의 서비스들 중 특별히 사용자에게 유용하고 가용한 서비스를 선택적으로 제공하는 서비스 제공방법이 필요하다[2][3][4]. 본 논문에서는 이러한 Personal Kiosk (PK) 시스템은 우선 동신 기능이 탑재된 모바이얼 단말기를 통해 사용자가 언제든지 서비스의 선택에 유용하고 가용한 서비스를 이용할 수 있는 방식이라는 연구를 수행 직사하고 있는 것으로, PK의 최종목표는 사용자의 최적화를 분석하고 사용자에게 필요한 유비쿼터스 서비스를 효과적으로 제공하는 것이다. PK 프로젝트는 진행 중이며 연구로서 현재 단계에 서는 "local area"에 존재하는 유비쿼터스 서비스를 효과적으로 지원하고 이를 관리하게 이용할 수 있도록 사용자에게 전달하는 방법을 제안하고 이를 기반으로 구현한 PK 시스템 및 기반구조를 소개한다.

2. PK 시스템 및 기반구조
PK 시스템과 기반구조는 전반으로 그림 1과 같이 등록한다.

![그림 1 PK Overview](image-url)

* 본 논문은 산업통상부 한국산업기술개발원 지원 한국항공대학교 부 실 인터넷정보센터 연구센터와 지원에 협력.
우선, 클라이언트는 전장에 부착된 IrDA 환경기기로부터 위치신호를 받고 PK Access Point(AP)로부터는 local area의 PK 서비스 주소를 받는다. 클라이언트는 위치신호를 자신의 포로파일 정보와 함께 PK 서비스에 자동 전송한다. 사용자 위치정보와 식별정보를 전송받은 PK 서비스는 이를 바탕으로 등록된 서비스 중 해당 사용자에게 유용/가용 서비스를 선택하고 그 목록을 전달한다. 전달된 서비스 목록은 사용자가 local area에 존재하는 서비스와 일치할 수 있도록 하기 위해 서비스를 선택하여 이용한다.

3. 사용자 환경기반 서비스 선택

개인화된 서비스 제공을 위해서는 다양한 유비쿼터스 서비스의 분석을 통해 일반적인 사용자 환경정보를 정의하고 이를 효과적으로 이용하여 서비스를 선택할 수 있는 방법이 연구되어야한다. 유비쿼터스 서비스의 가장 큰 특징은 모바일 환경에서 제공되는 점과 사용자의 환경정보(context)를 기반으로 개인화되어 제공되는 것이다.

즉, 모바일 사용자의 환경정보가 변하면 이에 대응해 제공되는 서비스들이 달라지는 것이다. 제공되는 서비스 목록을 달라지게 하는 주요한 환경정보는 사용자의 위치와 관련이 있다. 사용자의 위치와 관련은 여러 유비쿼터스 서비스들이 가장 많이 사용하는 일반적인 환경정보이다.

본 논문에서 제안하는 서비스 선택 방식은 위치와 환경 정보의 변화에 대응하여 활성화되는 서비스와 비활성화되는 서비스를 명확히 하는 방법이다. 즉, 사용자의 환경정보가 바뀌면 등록된 서비스들의 활성화 조건(Activation Condition)을 검사해 해당되는 서비스를 활성화하는 것이다.

3.1 위치기반 서비스 선택

위치를 기반으로 서비스의 활성화 조건을 표현하기 위해서 우선 물리공간을 모델화한 것이다. 인기가 생활하는 각 물리공간은 단순히 독립적으로 존재하지 않는다. 물리공간은 하위공간으로 나누어 지기도 하고 상위공간에 포함되기도 하여 가까이 위치할 수도 있으며, 멀리 떨어져서 존재할 수도 있다. 우리는 이러한 물리공간을 모델화하려고 하였으나, 이에 모델화된 공간을 각 서비스가 그 관련성에 따라 연동한다.

본 논문에서는 local area 공간과 서비스들의 관련성을 기반으로 연구의 서비스를 분석해 크게 3가지로 분류하였다.

- Space Dependent Services (SDS)
 SDS는 local area 내의 사용자가 해당 서비스와 관련된 공간 안에 있을 때 활성화되는 서비스

- Space Related Services (SRS)
 SRS는 local area 내의 사용자가 해당 서비스와 관련된 공간 밖에 있을 때에도 활성화되는 서비스

- Space Independent Services (SIS)
 SIS는 local area 내에 존재하는 서비스지만 어느 특정 공간과 연관 없이 제공되는 서비스

이와 같은 분류와 local area의 전용적 모델링으로 공간과 서비스의 활성화조건을 그림 2와 같이 표현할 수 있다.

![그림 2 물리공간과 서비스의 연동](image)

물리공간과 서비스의 연동을 통해 사용자가 서비스를 요청한 공간을 기반으로 유용/가용 서비스를 선택하는 것은 다음과 같은 단계로 이루어진다.

1. local area의 모든 SIS 서비스선택
2. 서비스 요청공간의 모든 SDS와 SRS 선택
3. 요구공간으로부터 루트공간까지의 상위공간을 순회하며 모든 서비스 선택
4. 공간에 위치한 모든 상위공간에 위치한 공간과의 관계(예) SRS 선택
5. 1~3 과정에서 순환한 공간을 제외하고 루트공간으로부터 모든 공간을 방문하여 SRS 선택
6. SRS 서비스들을 서비스 요청 공간과의 물리적 거리의 근접성 순으로 정렬, 제공

예를 들어 그림 2에서 사용자가 building 1에서 서비스를 요청하였다면 사용자는 서비스 C, A, B, F, D, H를 제공받게 된다. 여기서 물리적 근접성은 각 공간의 hop 수로 계산된다.

위와 같은 단계를 거쳐 사용자는 local area 내에서 자신이 위치한 공간에서 활성화되는 서비스들을 물리적 근접성 순서로 제공받을 수 있게 된다.

3.2 관리기반 서비스 선택

유비쿼터스 서비스는 그 특성상 서비스 관련을 가진 사용자에게만 제공되어야 하는 것이 있다. 이를 위해 각 유비쿼터스 서비스는 PK 서비스에 등록될 때 어떤 사용자에게 제공 되어야 하는지 인터넷을 명시되어야 한다. 하지만 많은 수의 사용자와 사용자가 존재하는 환경에서 각각의 서비스에 대해 각 사용자를 지정하기는 쉽지 않다. 또한 이러한 새로운 사용자나 서비스를 추가하기도 하면 오랜 시간이 지나야 한다. 이런 이유로 우리는 역할 개념을 이용해 사용자에게 가용한 서비스 목록을 추출하는 방법을 사용하였다. 사용자의 역
항을 기반으로 리스스의 접근 권한을 표현하는 방법은 Role-Based Access Control(RBAC)로 제어할 수 있다. RBAC은 사용자의 역할에 따른 권한을 부여함으로써 데이터에 대한 접근을 제어하는 방법이다. 우리는 RBAC을 적절한 접근 권한을 상속받는 RBAC를 적용하여 각 서비스와 이를 이용할 수 있는 사용자의 권한을 그림 3과 같이 표현하였다.

예를 들어 그림 3에서 서비스를 요청한 사용자가 대학원생(Graduate)이면 그 사용자는 서비스 G, C, A, B에 대한 사용 권한을 가진다. 즉, 서비스 G, C, A, B가 해당 사용자에게 활성화된다. 이런 방법은 계층적 구조의 상속관계를 이용함으로써 많은 수의 사용자와 서비스를 간의 접근 제어를 효과적으로 할 수 있을 뿐 아니라 새로운 서비스나 사용자의 추가가 용이하다는 장점이 있다.

그림 3. RBAC을 이용한 서비스 접근제어

권한을 기반으로 선택된 서비스 집합은 공간을 기반으로 선택된 서비스 집합과 교집합 연산을 통해 특정 사용자에게 유용/가용한 서비스를 선택할 수 있다.

4. 프로토타입 구현

PK 클라이언트는 Tablet PC를 이용해서 구현하였다. PK 기반구조와 상호작용하는 PK 클라이언트 프로그램은 C++ 언어로 구현되었고 서비스를 사용자에게 보여주는 클라이언트 인터페이스는 웹 브라우저에 이용되었다. 클라이언트 인터페이스를 웹 브라우저로 이용한 이유는 웹 브라우저는 이용자, 비디오, 오디오 등의 다양한 형태의 데이터를 처리할 수 있을 뿐 아니라 자바 애플리케이션, 플래시, 각종 스크립트 언어를 지원해 그 확장성과 정보표현 가능이 뛰어나기 때문이다.

그림 4. PK 클라이언트 및 인프라

5. 결론 및 향후연구

본 논문에서는 우리가 지향하는 유비쿼터스 서비스 환경의 PK를 구축하기 위해 사용자환경기술 서비스 선택 방안을 제시하였다. 현재 유비쿼터스 발전 동향은 정보 물리공간과 서비스가 연동 및 통합되고 있는 모바일과 서비스의 연동은 인간의 삶을 보다 편리하게 만드는 여러 가지 서비스들이 만들어지고 동시에 이를 효과적으로 이용하고 관리할 수 있게 하는 방법을 필요로 한다. 사실, 현재 기술로도 쉽게 만들 수 있고 사용자를 편리하게 할 수 있는 서비스들이 우리 생활 곳곳에 존재한다. 이런 서비스들이 아직 실생활에서 제공되지 못하는 중요한 이유 중 하나는 이를 효과적으로 제공해낼 수 있는 시스템이나 기반구조가 없기 때문이다. 그렇기 때문에 유비쿼터스 서비스들의 종류와 그 특성을 분석하고 이를 체계적으로 제공할 수 있는 방법에 대한 연구가 필요하다고 본 논문에서는 이와 같은 문제 중 하나인 개인화된 서비스 제공을 위한 서비스 선택방법에 대해 다루었다. 향후 PK 연구를 발전시키기 위해 현재 연구되고 있는 많은 수의 서비스들의 특성을 분석하고 이를 효과적으로 지원하는데 필요한 이슈들에 대한 해결책을 연구할 것이다.

참고문헌