SIOP 시뮬레이터를 위한 GUI 기반의 전처리부 설계 및 구현

이명인* 이재기 강동우
동아대학교 컴퓨터공학과
manson@donga.ac.kr, jklee@dau.ac.kr, dongwoo@donga.ac.kr

Design and Implementation of GUI-based Preprocess for SIOP Simulator
Yang Min Lee JaeKe Lee, DongWoo Kang
Computer Engineering Department, Dong-A Univ.

요 약
전통적으로 수행하기가 고갈되기가 있는 시뮬레이션에서 해석에 근거한 자료수의 개발은 매우 중요하다. 현재
이와 관련한 연구가 활발히 수행되고 있다. 해안 지하수를 개발하고 관리하기 위한 다양한 시뮬레이터가 존
재하며, 많은 시뮬레이터들이 복잡하고 난해한 인터페이스로 인하여 시뮬레이션 성공률과 사용률이 낮은
편이다. 본 논문에서는 GUI 기반의 사용자 레이블의 중심의 시뮬레이터 전처리부를 개발하였다. 특히 해안
지하수 개발 관리 시뮬레이터의 하나인 SIOP을 대상으로 하여 마우스 입력 중심의 전처리부를 개발하여
시뮬레이션 성공률과 사용 편의성을 증가시켰다.

전처리부가 처리하는 부분의 구조는 ①과 같다.

![그림 1] 전처리부 계층 구조

SIOP 시뮬레이터에 대한 3개의 입력 파일(.drw, .ds.m, .ga.m)을 생성하기 위해 전처리기 기반의 일반 파일은 그 입력 파일들이 자료의 명령을 담는 구조로 형성되어 있다. 전처리기의 기본
구조는 ①과 같다. 각각의 클러스터들은 전처리기 인터페이스를 구성하는 기본 작업장, 보조 작업장, 결과 작업장의 기능을 독립적
으로 달성하도록 구성하였다. 이를 각 클러스터가 최종적으로

![그림 2] 전처리기 기본 구조

(표 1)은 전처리기구를 구성하는 각 클러스터들의 기능들에 정리한 것이

1. 서론

UNO에서 발표한 세계수자원개발 보고에 의하면, 지구의 1명당 달수 공급량은 황후 20년 이내에 3분의 1이 줄어들었다고 한다. 특히 한국의 경
무에도 범위가, 남아프리카공화국, 인도네시아 등 11개국과 함께 물 부족
국가로 포함되어 있다. 전 국민의 14%인 65만 명이 생수도 허리
맞지 못하고 있으며, 28년간 재생 가능한 수자원은 180개국 중 146위
로 정하여 권에 분류되었는데[1].
수치화 문법에 대해 특기적인 대략으로는 점적이 있으나 황후에 증가하는 수자원 사용량과 인구 증가에 대비할 수가 없다. 또한 국내에
는 아직 이용 가능한 많은 자료가 전달되어 이들의 개발에 나서는
것이 어렵고 도전적으로 수치화 부분에 대한 적극적인 대책이 필요하다.

수치화 문법의 극복을 위해 다양한 연구에서 수치화 기법을 적용한
해안 지하수의 개발 및 관리를 위한 시뮬레이터를 제작하고 있다.
[2][3][4]. 각 시뮬레이터는 언제나 필요하며 결과적으로 사용자의 시뮬레이터
지식에 대해 이해해야 지식이 요구된다[5][6][7]. 이로인한 복잡성과 시뮬
레이터 사용의 난해성은 시뮬레이터 사용에 제한을 초래하고 특히 해
안 지하수의 해석충돌을 위해 최적 결과를 향상시키기까지의 실험적
환경을 갖추어야 한다.
본 논문에서는 이전의 사용자들에 대해 해결하고 시뮬레이터 사용의
활성화를 위해 해안 지하수 관리에 시뮬레이터인 SIOP[7]에 대
한 GUI(Graphic User Interface) 기반의 전처리부 설계와 구현을 수행
하였다.

사용자 외의 시뮬레이터 생성의 창조는 무한적인 목표로 하여
일반 인터페이스 설계 시 최우선으로 고려할 수 있는 사항을 사용자
편의성, 단순화된 마우스 입력과 이들 적절한 움직임과 조절을 구현할
수 있도록 전처리부를 구성하였다.
본 논문의 구성은 1장의 서론에 이어, 2장에서는 전처리부의 구조
설계 방식에 대비 왔으며, 3장에서는 결정 분리의 구현을 기술하
였다. 4장에서는 전처리부 구현 결과를 제시하였고, 5장은 결론에
다.

2. 전처리부 구조 설계
2.1 프로그램 전처리 구조
시뮬레이션을 위해 필요한 3개의 입력 파일 생성은[7] 입력의 원본
생성과 전처리를 유지하기 위해 사용자 명령 및 전처리부의 각각을 구
현한 프로그래머 구조가 요구된다. 특히 본 전처리부의 경우 수치화를
이용하여 지도 상에서의 다양한 입력 항목이 수행되기 때문에 지도에
서의 입력이 입력 파일에 반영되어야 한다.
제32회 추계학술발표회 논문집 Vol. 32, No. 2(II)

(표 1) 전처리기 구성 클래스 및 기능

<table>
<thead>
<tr>
<th>클래스</th>
<th>기능</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapStudio</td>
<td>- 프로그램의 메인 퍼레로 나머지 구성요소를 담는 컨트롤러 역할</td>
</tr>
<tr>
<td></td>
<td>- 메뉴, 패널이, 수치조절, 읽기 보기를 미쳤다, 수치조절 대</td>
</tr>
<tr>
<td></td>
<td>이터 수치조절, 출력 선택, 출력 모드로 구성</td>
</tr>
<tr>
<td></td>
<td>- 사용자의 상호작용에 따라 다른 구성요소들에 속한 클래스로 메시지를 보내는 역할</td>
</tr>
<tr>
<td>MapStudioControls</td>
<td>- 수치 조절에 관련된 드로잉, 사용자와의 상호작용을 처리하는 구성요소</td>
</tr>
<tr>
<td></td>
<td>- 사용자가 수치조절에 변경하는 모든 데이터를 DSN, DAV, 구조를 변경한 후 사용</td>
</tr>
<tr>
<td>WinFormsUI</td>
<td>- MapStudio의 수치 조절 패널, 읽기 보기를 열기로 구성</td>
</tr>
<tr>
<td></td>
<td>- 사용자와의 상호작용을 처리하는 List Control</td>
</tr>
<tr>
<td></td>
<td>- 사용자가 경계조건, 모델 등에 대한 수치 데이터를 입력할 때 사용</td>
</tr>
<tr>
<td>GlacialList</td>
<td>- MapStudioControls 구성 요소 내에서 사용하는 List Control</td>
</tr>
<tr>
<td></td>
<td>- 사용자가 경계조건, 모델 등에 대한 수치 데이터를 입력할 때 사용</td>
</tr>
<tr>
<td>CircularMenu</td>
<td>- CircularMenu의 그림자 및 메시지 표시 좌표 입력</td>
</tr>
<tr>
<td>PixelEffect</td>
<td>- CircularMenu의 ContextMenu를 구현</td>
</tr>
</tbody>
</table>

2.1. 사용자 코앤드 패턴

전처리기의 경우 시동레이저의 입력 형태를 생성하기 위한 목적으로 구성하였기 때문에 입력 파일의 빌드를 위한 다양한 사용자 코앤드가 요구된다. 구현상에 발생하는 문제점과 특성에 따라 사용자 코앤드를 추가하기 위해서 기본적으로 GoF 패턴 중 하나의 뷰어다소의 클래스 Bei라는 Decorator(Wrapper)를 구현하여 구현하였다.

2.1.1 Command 패턴

MapStudioControls에서 Undo, Redo 기능을 구현하기 위해서 Command 패턴을 사용하였다. ActionManager 클래스의 경우 Command의 하나를 구현하는 클래스로 수행할 모든 Command를 관리한다. 사용자의 요청에 따라 Command 클래스의 Undo, Redo 기능을 호출한다.


2.1.2 Decorator 패턴

사용자의 수치조절에 경계조건, 다음과 같은 조건들을 설정하는 작업을 했을 때 이를 지도상에 드로잉 하기 위해 Decorator 패턴을 사용하였다. (그림 3)에 이들 구조를 나타내었다.

(그림 4) Decorator 패턴 클래스 구성도

IMapObject interface는 수치조절에 드로잉 작업이 필요한 모든 객체에 대한 인터페이스를 정의한다. 수치조절에 드로잉이 필요한 모든 클래스는 IMapObject interface로부터 상속을 빌드하고 Draw() 메서드로, 캐시의 드로잉 기능을 구현한다.

MapControl 클래스는 수치조절에 드로잉할 경우 클래스의 객체를 가지고 있는 클래스로서 클래스의 객체를 가진 클래스에서 수치조절이 드로잉 할 때 메시지로 받으려는 객체들에 그림을 작업을 동시에 수행한다.

3. 정의 생성 알고리즘

SIOP 시뮬레이터에서 해가 지속하는 특성에 의해 특성의 영향에 의해 발생된 결과는 그림의 특정 문제를 해결할 수 있는 영향을 미치는 영향을 결정할 수 있는 기능을 구현하였다. 이에 이는 영향에 포함되는 그림의 특성을 생성할 수 있는 알고리즘을 구현하여 사용하였다.

3.1 영역 내 정점을 추출 알고리즘

다각형 영역 내 단점 생성할 알고리즘은 특정 포인트가 다각형 내부에 존재하는지를 판단하는 알고리즘이며 매우 중요하다.

特定 포인트의 다각형 내부 여부를 판단하기 위해 우선 포인트로부터 오름차순으로 위치한 각 면의 상단 점을 하나씩 비교한다. 이 가장

선이 다각형의 변과 충돌을 일치한 다음 포인트가 다각형 내부에 있는 경우, 다각형을 이루는 각 변과 가장 상단점의 교차 여부를 판단

하여 최상단의 카운트를 계속한다. 다각형의 모든 변에의 교차 여부를

지나친 변에서 카운트 값이 낮아진 포인트가 다각형 내부에 존재한다고 할 수 있다. 그러나 위의 알고리즘은 같은 선의 다각형이 영역

를 선으로 하나씩 겪는 경우, 가장의 선 포인트의 다각형의 점이 있는데는 경우에는 범위를 만들다 못한 것이다. 이를 수행하기 위해 다

각형을 이루는 각 변에 대해 선의 이웃점이 가장의 선과 만나는

경우 카운트를 해소할 수 있다. 수행할 알고리즘을 영역 내에 있는 각

점에 대해 수행하고 시계 또는 대수직 영역 내에 있는 점을 모두

할 수 있다. 수행한 영역이 겪어서 생성되는 경우 후 분에 생성된 점은 대수직 영역을 정의하며, 선 이분 경계를 지나는 후 두 번째 영역

에 속하는 경우, 이진 경계에 있는 점에 대해 수행하고 시계 또는 대수직 영역에 속하는 점을 이들 수행한 영역을 정의하게 된다.

3.2 경계 리내라 영역까지 그림 선의 골이 가장 긴 점을 추출 알고리즘

경계리네라는 하나 이상의 선으로 이루어져 있고, 각 선으로 이루어져

이를 알고리즘을 사용한다.

경계리네라는 하나의 선은 동일 선원에 대해, 선은 동일 선원에 두 점을

성합하는 최소 영역의 가장 사각형 영역을 만들고 그 가장 사각형 영역에 선의 모든 점, 과 사각형 영역 외부의 최단 점을 추출한다.

경계리네라는 선의 조건을 이루는 그림은 선의 선원에 의해 가능하고, 각 선원에 대해 두 가지 조건을 갖추어 처리한다. 최소 영역과 관련된 조건들과의 처리를 구현한다. 이는 최소 경계가 있는 경우의 경우 경계리네라는 선의 선원에 가장 근접한 점이 된다.
4. 구현 결과

(그림 5)는 앞서 서술한 클러스터링 과정 생성 알고리즘을 이용하여 구현한 전처리부 인터페이스이다. 구현은 Visual Basic.Net에 포함되어 있는 C#을 이용하였다.

(그림 5)의 인터페이스를 살펴보면 수직 조절과 우측의 각 그룹별 입력을 수행할 수 있는 보조 작업창, 입력 결과나 입력 행의 종류 및 수치 등을 나타내는 결과 출력창을 확인할 수 있다.

(그림 5) 전처리부 인터페이스

(그림 5)의 상부는 사용자의 입력을 편리하게 도와주는 메뉴 및 단축 아이콘으로 구성되어 있는데, (그림 6)에 이러한 메뉴와 단축 아이콘을 확대하여 나타내었다.

(그림 6) 전처리부 메뉴 및 단축 아이콘

(그림 5)은 3개의 입력 파일에 대한 각 그룹의 입력 화면을 나타낸다. 3개의 입력 파일에 대한 개별적 입력과 특정 파일 1개만을 선택하여 입력하는 화면을 수행할 수 있다.

(그림 7) 입력 파일별, 그룹별 입력 화면

최종적으로 (그림 8)에 수치 지도를 포함하여 지도상에서 그리드를

5. 결론 및 향후 과제

본 논문은 데이터 관리 시스템의 구축 연구의 일환으로 수행중인 해외 지하수 관리 시뮬레이션인 SIOP의 전처리부 설계와 구현에 대한 것이다.

SIOP 시뮬레이션은 시뮬레이션을 위해서 3개의 입력 파일을 요구하며, 입력 파일 생성을 위해서 기존에는 테스트 에디터를 이용한 편

사적인 방법을 사용하였다. 이러한 방법으로는 한 번의 시뮬레이션을 위해 입력 파일 작성에 많은 시간과 노력이 요구되어 작업 생산성을 감소시키는 결과로 이어졌다.

이에 GUI에 기반한 전처리부 개발을 수행하였다. 해외 지하수의 개

발을 위한 다양한 정보를 포함하고 있는 수치 지도를 직접 로딩하여 바로 사용할 수 있도록 하였다. 또한 수치 지도상에서의 특정 영역에

대한 그림 생성과 영역 지정을 투스 및 몇 번의 이동으로 가능하게

하여 직관성이 높은 전처리부를 구현하였다.

프로그램 구조는 제사용과 수정이 용이하도록 독립적인 객체를 적용

하였다.

결론적으로 본 논문에서 구현한 전처리부는 시뮬레이션을 위한 준비

시간을 대폭 감소시키며 향후 사용자들이 보다 편리하게 시뮬레이터를 사용할 수 있도록 하여, 해외 지하수 확보를 위한 다양한 실험에 실현

할 수 있게 되었다.

향후 과제로는 다양한 수치 지도 포맷을 포함할 수 있도록 라이브러리

등을 추가하는 것으로 되어 있다.

[참고 문헌]

[1] 김대홍, "올 부족한상에 따른 수자원개발에 관한 고찰", 수자원학

집, 2003. 8

[2] 천정용, "무한한 다공성 매질에서의 지하수의 변동과 고려한 지형

이용에 비수용성지역의 홍수 모델", 지질공학, 13권, 1호, 51-65, 2003, 7


[6] 조영권, 최영미, "수자원의 심천 정량과 홍수단의 인터페이스 설

계", 한국기상기후학회 2003, 3.


[9] 이영민, 우성용, 고영권, 이자기, "GUI에 기반한 시뮬레이션의 입

력자 설계 및 구현", 동아대학교 부설 정보기술연구소 논문집 제12권 제2호, pp.113-121, 2005. 2.