Application of Reverse Engineering for Manufacturing Errors at Manufacturing Gear using W-EDM

ABSTRACT

Gear is an important machine element to be used transmission in case short between axis. We drew gear using automatic design program to solve problem when it draw gear. We manufactured gears that it have different pressure angles using W-EDM. And we got a 2D profile of manufactured gear using reverse engineering. So we got to manufacturing error in comparison with CAD data and measured data. In result we could manufacture precise gear through improvement of manufacturing processes.

Key Words : Gear(기어), Involute curve(일반цикл 체크), Automatic design program(자동설계프로그램), Manufacturing error(가공 오차), Reverse engineering(역설계), W-EDM(Wire electric discharge machining, 와이어 겉 방전기공)

1. 서론

기어는 축간 거리가 짧은 경우 동력전달장치로 사용되는 주요 기계요소이다. 최근에는 소비자의 요구에 맞추어 재료의 다양화, 설계화되는 추세이다. 이러한 요구를 만족하기 위해 설계로서 큰 역할을 하는 기어 설계는 기어의 중요성이 부각되고 있다. 기어의 설계하기 위해 다양한 모델링이 사용되고 있지만 여러모로 보안성 시각의 과학 및 전문 설계인력의 부재등의 문제점을 앓고 있다. 이를 해결하기 위한 방법으로 모델링 별로 다양한 방법을 제시하고 있다. 그중 하나가 ADS(Automatic design system)로서 이것은 설계에 필요한 몇 가지 요소를 DCL 프로그램을 활용하여 2차원 및 3차원 모델을 생성하는 것이다. 일반적으로 ADS는 AutoCAD 또는 MDT 기반의 Visual.LISP에서 사용된다[13].

기어의 경우 일반적으로 KS 또는 ISO 규격에 맞게 설계하고 각각을 하여 사용한다. 따라서 기어의 각각에 있어도 규격화된 경우가 많다. 또한 사용되는 기어가 공정법은 전자기공법으로 이는 크게 설계형과 방설법으로 나눌 수 있다.

그러나 이러한 설계기공법은 규격화되어 있는 기어 설계에 한정되어 있다는 한계를 가지고 있다. 따라서 이러한 단점을 보완하기 위해 설계기공법 및 방법각품등을 이용하여 기어를 제작하기도 한다.

따라서 본 연구에서는 설계 연구에 의해 개발된 기어 자동설계프로그램을 사용하여 설계되지 않은 다양한 기어를 기반으로 설계하고 이렇게 설계된 기어를 와이어 겉 방전기공법을 이용하여 기어를 제작하고자 한다. 또한 기반된 기어에 대해 역설계를 이용하여 측정 데이터를 획득하고 CAD 데이터와 측정 데이터를 비교하여 기어공정을 확인하고자 한다.

2. 기어 자동설계프로그램

3차원 모델기어 자동설계프로그램은 AutoCAD 기반의 Visual.LISP을 사용하여 개발되었다. 본 프로그램은 사용자의 입력된 데이터를 기초로 해서 설계적으로 일반цикл 체크 및 프로파일의 밑면, 변형을
병렬하여 자유롭게 선택할 수 있도록 프로그램되었다. 사용자가 기어 설계를 입력하고 ‘OK’ 버튼을 눌러
한 후 모델링까지 걸리는 시간은 10~12분으로서 기
어 자동설계프로그램은 많은 시간에 3차원 형상을
구현해 냈을 수 있는 장점을 가지고 있다.

Fig. 1은 기어 제작을 입력받을 수 있는 대화입력
창(DCL)을 나타내고 있다. 스퀘어어의 3차원 모델링
에 필요한 요소는 입력값, 모델, 맥 선형, 플래인션,스
터 두께, 중심 축의 크기 및 기 흐름 규칙들이다.
기어 설계에 필요한 모든 값들은 사용자의 설계
처수에 맞게 직접 입력할 수 있다.

Fig. 1 Dialog box of spur gear

3. 기어 가공

일반적으로 규격화되어 있는 기어의 경우에는 전
삭가공법을 통해 가공이 이루어지지만 규격화되어
있지 않은 기어의 경우에는 알린각법으로 공작이 준비
되여 있지 않은 경우가 대부분으로써 전삭가공법을
통한 가공은 힘들 설계이다.

따라서 본 연구에서는 전삭가공법을 배제하고 알
린각법으로 설계된 스퀘어어를 방전가공법을 이용하여
가공하였다.

Fig. 2는 알린각법으로 설계된 기어 프로파일을 나
타내고 있다. 본 연구에서는 모듈이 4이고 앞가지 20
인 기어를 설계하였다. 또한 알린각은 14.5°와 15°
에서 25°까지 1°씩 증가시키며 설계를 하여 총 12
중의 스퀘어어를 가공하였다.

(c) 22° (d) 25°
Fig. 2 Profile of spur gear for other pressure angle

본 연구에서 기어 가공에 사용된 와이어 몽방전
가공(Wire electric discharge machining, W-EDM)은 가
능 와이어(모듈 $\phi 0.05 \sim 0.24 \text{ mm}$)를 전극으로 하여,
와이어와 공작물 사이에 방전이 일어나 때 방전
하는 방전의 전극으로서 공작물을 가공하는 것이다. 또
한 공작물과 전극의 상대 운동에 의해 형성됨으로서 2
차원 윤곽 가공을 하게 된다. Fig. 3은 와이어 몽 방전
기어의 원리를 나타내고 있다.

Fig. 3 Principle of W-EDM

Fig. 4는 본 연구에서 사용된 와이어 방전가공기
을 나타내고 있으며 Table 1은 가공기의 사항을 나타
내고 있다.

Fig. 4 Manufacturing machine to process gear
(W-EDM, AQ750L)

Table 1 Specifications of the W-EDM

Maximum dimension of manufactured parts (W × D × H)	1050 × 750 × 400 mm
Feed length (X × Y × Z)	750 × 500 × 400 mm
Maximum weight of manufactured parts	1000 kg
Dimension of machine (W × D × H)	2050 × 2650 × 2295 mm
Weight of machine	5000 kg
Diameter of wire electrode	$\phi 0.15 \sim \phi 0.3$

(a) 14.5° (b) 17°
Fig. 5는 양쪽 각 비로 가공된 기어의 실제 형상을 나타내고 있다.

(a) 14.5° (b) 17°

(c) 22° (d) 25°

Fig. 5 Manufactured spur gear for other pressure angle

4. 가공 오차

4.1 기어 역설계

가공된 기어를 전용하기 위하여 기어를 역설계하고 역설계된 프로파일과 CAD 프로파일을 비교하여 보았다.

Fig. 6은 본 실험에 사용된 역설계 장비를 나타내고 있다. 본 장비는 레인주 기어 측정 장비와 X, Y축의 LM 가이드를 이용하여 3차원 형상의 젊 데이터 균을 수집할 수 있다. 정확한 데이터의 확득을 위해 측정은 몇 번씩 사용하여 높은 정확도 비중을 사용하여 도해를 실시하였다.

Fig. 6 Equipment for reverse engineering

현대의 데이터는 역설계 프로그램을 이용하여 컴퓨터를 하여 3차원 사피 면(surface) 형상을 구하고 이 이를 통해 기어 2차원 프로파일을 획득하였다. 여기서 3차원 형상이 아닌 2차원 프로파일을 비교하는 이유는 오차의 최소화하기 위해서는 양측면 비호응 패턴의 특성상 부품이 동등하게 측정되는 형상이 필요로 3차원이 아닌 2차원적인 비교를 실시하게 되였다. Fig. 7은 각각 실제 기어와 측정된 기어의 형상을 비교한 것이다.

(a) Real shape (b) Measured data

Fig. 7 Comparing real shape and measured data

4.2 가공오차

역설계를 통해 획득한 2차원 프로파일과 CAD 데이터를 비교하여 가공오차를 산출하고자 한다. 본 실험에서는 ISO 기준 중 하나인 양각 25° 기어를 측정하여 비교하였다.

Fig. 8은 CAD 데이터(①)와 측정데이터(②)를 나타낸 것이다. 전체적으로 측정데이터가 CAD 데이터보다 적은 형상을 가지고 있고, 이러한 한계는 왜 기어 젊 offset 양의 설정이 잘못되어 발생한 것으로 판단된다.

Fig. 8(a)는 기어치 석의 부분을 비교한 것이다. A 지점은 기어치 중심 부분이고, B지점은 트로이어드 림켓 중심부이며, C부분은 인베르트 구선 부분이다. A, B 그리고 C 지점을 비교해보면 석의 위 부분보다는 구선 부분에서 주로 오차가 많이 발생하고 있다. 이것은 빈간각을 목표로 부품을 적정 속도에 따라 급속히 돌고 있는 원기어에 따른 오차로 생각된다. 일반적으로 대상모델을 가공한 때 적정 속도보다는 곡선 이전에 젊 병도를 환상시키기 위해 이동 속도를 적절히 조정한 결과다.

Fig. 8(b)는 기어치 석면 부분의 오차를 나타내고 있다. 인베르트 구선부에서는 거의 일관하게 오차가 나타나고 있음을 알 수 있다. D와 E 부분에서는 석의 형상이 다르게 구선이 나타나고 있다. 이것은 외관적 측정장비에서 나타나는 측정오차로 판단된다.

(a) Error at dedendum circle part
5. 결론

본 연구에서는 스피커기 자동설계프로그램을 이용하여 알리지면 스피커기기를 설계하고 여름 가공하여 가공요자를 측정하여 보았다.

 이를 통해 다음과 같은 결론을 얻었다.

(1) 사용자 목적으로 맞게 양각각범(14.5° ~ 25°) 스피커기를 설계할 수 있는 방법을 제시하였다.

(2) 각각의 양각각에 따른 스피커기의 W-EDM를 이용하여 가공하였다.

(3) 가공된 기기를 역설계를 이용하여 측정 데이터를 획득하였다. 이 데이터를 기초로하여 기어의 2차원 선정 데이터를 얻을 수 있었다.

(4) 스피커기의 CAD 데이터와 측정 데이터의 비교를 통해 가공 오차 및 측정 오차를 확인하였다.

(5) 가공 오차의 원인을 분석하고 가공상의 공간을 개선하여 CAD 데이터와 거의 일치하는 기여형

가공할 수 있었다.

(6) 기여의 설계, 가공 및 점검을 통해 보다 정밀한 제품을 얻을 수 있는 방법을 제시하였다.

후기

본 연구는 산업자원부 지방기술혁신사업 (R104-01-03) 지원으로 수행되었습니다.

참고문헌

Gear using VisualLISP", Proceeding of the Korean Society of Machine Tool Engineers, Fall

2004.