실험계획법에 의한 러버실 급형가공을 위한 총행공구의 최적설계

Li hai Li(전북대학교 대학원 기계공학과), 임표(전북대학교 대학원 기계공학과), 이희관(전북대학교 자동차 부품금형 혁신센터), 양규의(전북대학교 기계항공시스템공학부)

Optimal design of formed tool for die of rubber seals using design of experiments


ABSTRACT

The design of experiments are used for optimal design of formed tools to machine automobile bearing rubber seal die, which is classified into the high precision rubber mold. The clearance angle, rake angle and the length cutting edge are considered as the factors. The cutting force is selected to be a characteristic value and compared with the mean tool wear and life by repeated experiments. The design of the experiment is based on the repeated one-way factorial design, which finds the significance of the factors and the best level to predict the tool life by using ANOVA and regression.

Key Words: Formed tool(총행공구), ANOVA(분산분석), One-way factorial design(일원배치법)

1. 서론

러버실(rubber seal)의 품질은 운활유의 방지와 전 통제의 마찰 감소를 최적의 상태로 유지시키는 것이므로 결정되며, 고정밀의 보어링임수록 러버실 형상이 정교하고 복잡한 특성을 가지고 있다. 이처럼 기하학적으로 복잡한 러버실을 생산하기 위해서는 그 형상은 정확하게 표현하는 급형의 제작이 필요하며, 단단하고 고정밀도로 만족하는 특별한 가공법이 필요하다1). 자동차용 보어링 러버실 급형의 제작에서 인서트 타입의 총행공구의 사용은 급형의 동밀함상과 생산 cycle단축, 원가 절감 등의 측면에서 경쟁력을 확보할 수 있으며, 공구에 의한 언더컷(under-cut)을 고려하지 않아도 되는 장점이 있다. 효율적인 급형가공을 위한 총행공구의 설계는 러버실의 형상과 설계력에 고려하여 수행되어야 한다.

본 연구에서는 러버실 급형 가공을 위한 총형공구의 효율적인 설계를 위하여 주요 설계인자에 대한 특성치의 분석에 실험계획법을 적용하고자 한다. 총행공구의 설계에서 유의한 영향을 가짐 것이라고 고려되는 여유각, 경사각 그리고 절단의 깊이를 공구 설계인자로 고려하였으며, 총행공구의 수명에 영향을 큰 절삭력을 특성치로 선택하고 반복 실험을 수행하였다. 실험의 설계는 일반적인 과일배치법에 의하여 실시되었으며, 분산분석과 회귀분석을 통하여 각 요인에 대한 유의성과 최적 수준을 찾고, 공구 수명을 예측하고자 한다. 이를 총행공구의 설계기준으로 삼아 러버실 급형의 생산가공에 효율성을 도모하고자 한다.

2. 총행공구

총행공구는 엉고자 하는 형상을 목적으로 제작하여 1회의 가공으로 요구하는 형상과 처수를 가공할 수 있는 특수공구를 말하며, 이 공구를 이용한 가공품의 형상정밀도는 일반 상용 공구로 가공된 것에 비해 뛰어나고, 가공면에 거품(cusp)이 남지 않아 표면거칠기가 얇고하다2). 총행공구의 설계에서 공구수명과 정밀도에 영향을 미치는 인자를 고려하여 설계의 형상을 설계하는 것이 가장 중요하다.
3. 실험장치 및 실험방법

3.1 실험장치 및 조건선정

본 연구에서 사용된 충전공구는 상용 인버트림(Inset tip: TaeguTec, SPKN 1203 EDR K10)을 재료로 W-EDM에 의하여 제작되었다. 충전공구의 결과선을 평가 할 주요인자로는 절단의 길이, 경사각 그리고 여유각을 선정하였다. 9회 반복실험을 수행함으로써 오차향의 자유도를 크게 해주었다. Table 1은 실험을 위한 가공조건의 변동을 보여주고 있다.

<table>
<thead>
<tr>
<th>Table 1 Experimental conditions for cutting force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors</td>
</tr>
<tr>
<td>Level</td>
</tr>
<tr>
<td>Length 1.8mm 3.8mm 5.8mm 7.8mm 9.8mm</td>
</tr>
<tr>
<td>Rake angle -20° -6° 0° 5° 8° 10°</td>
</tr>
<tr>
<td>Clearance angle 5° 8° 11° 15° 20°</td>
</tr>
<tr>
<td>Constant factors</td>
</tr>
<tr>
<td>spindle: 3000 RPM</td>
</tr>
<tr>
<td>feed: 3mm/min</td>
</tr>
<tr>
<td>depth of cut: 0.01mm</td>
</tr>
</tbody>
</table>

피삭재는 실제 금형 생산에 사용되는 변형이 적고 정면 연마성이 우수한 초경면성 정밀 플라스틱 금형감(NAK80)이다.

3.2 실험방법

배어형 릴리시설은 수백㎛의 치수를 갖는 완(完)모양의 기하학적 형상을 가지고 있다. 이와 같은 형상은 고려하여 Fig. 2에서와 같이 릴리시설 길이의 다수의 동일한 캐비티를 배포한 것으로 이루어져 있으며 하나의 캐비티에서 얻어지는 X축, Y축 방향의 절삭력은 상호 중하고 감소를 반복하며 주기성을 가진 과정으로 낳는다. 또한 절삭량을 평가하기 위해 1개의 캐비티 내에서 동일 가공비교 함액의 혼합 비율을 산출하여 평가하였다.

공구바로는 공구와 피삭재 사이의 상대적인 정도의 함수관계를 나타내며 공구수명은 여유벽 마모(Blank wear land)를 일정한 값으로 정정한 후에 마모폭을 점검하여 결정한다. 하지만 일정한 여유벽 마모폭으로 공구수명을 결정하는 경우는 경사각, 여유각 공구설계에 따라 치수정밀도에 영향을 미치는 정도가 다르게 된다. 이에 경사각, 공구설계, 여유각이 다른 공구로 동일거리를 가공한 후 공구마모 정도를 알아보았다. 여유벽 마모폭은 Fig. 3에 같이 여유벽 마모 부위에서 여러 부분을 측정한 후 그 평균값(H1)으로 여유벽 마모폭을 산출하고 H2로 마모를 평가하였다.

4. 실험결과 및 분석

4.1 절삭력 분석

4.1.1 여유각

여유각은 가공물의 치수정밀도와 공구수명에 영향을 주는 인자라고 보여지며, table 2에서는 여유각에 따른 절삭력의 변동을 보여주고 있다.

<table>
<thead>
<tr>
<th>Table 2 Cutting force variety of the clearance angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force experiment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Table 3 ANOVA for cutting force of clearance angle

<table>
<thead>
<tr>
<th>factor</th>
<th>S</th>
<th>Φ</th>
<th>V</th>
<th>F</th>
<th>p&lt;0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance angle</td>
<td>136.60</td>
<td>4</td>
<td>74.15</td>
<td>29.90*</td>
<td>2.61</td>
</tr>
<tr>
<td>Error</td>
<td>63.36</td>
<td>40</td>
<td>1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>201.96</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4 Boxplots of force by clearance angle

Fig. 4은 경사각에 대한 반복실험을 통하여 얻어진 수준별 데이터의 분포를 나타낸 밸디어그램이다. 3수준인 여유각 11°에서 절삭력이 가장 낮으며 절삭력의 변동이 안정적으로 분포되어 있다는 것을 보여주고 있다. Table 4는 여유각에 대한 절삭력 변동을 예측하기 위한 다차 선형 회귀 분석 모델의 유의성을 보여주고 있다.

Table 4 ANOVA for regression model on clearance angle

<table>
<thead>
<tr>
<th>Factor</th>
<th>S</th>
<th>Φ</th>
<th>V</th>
<th>F</th>
<th>p&lt;0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>35.53</td>
<td>3</td>
<td>11.79</td>
<td>2.90*</td>
<td>2.84</td>
</tr>
<tr>
<td>Error</td>
<td>166.61</td>
<td>41</td>
<td>4.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>201.96</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

추정식 \( y = -0.01x^3 + 0.37x^2 - 4.33x + 63.01 \)는 유의수준 95%내에서 유의하며 총 변동 중에서 회귀식에 의하여 설명되는 변동이 차지하는 비율인 결정계수(coefficient of determination ; R^2)가 17.5%로 그리 높지 않기 때문에 좋은 회귀식이라고 할 수 없다. 이는 회귀식을 추정하는데 있어서 절삭력 변동을 설명하는 여유각 만으로는 부족하다는 것을 의미한다.

Table 5 Tool wear on clearance angle

<table>
<thead>
<tr>
<th>Clearance angle</th>
<th>5°</th>
<th>8°</th>
<th>11°</th>
<th>15°</th>
<th>20°</th>
</tr>
</thead>
<tbody>
<tr>
<td>wear</td>
<td>7gm</td>
<td>11gm</td>
<td>17gm</td>
<td>24gm</td>
<td>29gm</td>
</tr>
</tbody>
</table>

Table 5은 여유각에 따른 평균 공구마모를 보여주고 있는데, 절삭력과는 달리 여유각이 적은수록 공구마모가 적어짐을 알 수 있다.

4. 1. 2 경사각

Table 6는 평균으로 여유각에 따른 절삭력의 변동 및 분산분석을 한 결과를 보여주고 있는데 경사각은 유의수준 95%내에서 유의하다.

Table 6 Cutting force variety of rake angle

<table>
<thead>
<tr>
<th>Factor</th>
<th>S</th>
<th>Φ</th>
<th>V</th>
<th>F</th>
<th>p&lt;0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>rake angle</td>
<td>74.745</td>
<td>59.600</td>
<td>51.490</td>
<td>43.350</td>
<td>34.971</td>
</tr>
<tr>
<td>Error</td>
<td>74.434</td>
<td>59.533</td>
<td>51.744</td>
<td>43.526</td>
<td>34.581</td>
</tr>
<tr>
<td>rake angle</td>
<td>73.692</td>
<td>59.428</td>
<td>51.881</td>
<td>44.041</td>
<td>34.422</td>
</tr>
<tr>
<td>Error</td>
<td>73.343</td>
<td>59.686</td>
<td>51.836</td>
<td>43.066</td>
<td>34.073</td>
</tr>
<tr>
<td>rake angle</td>
<td>73.726</td>
<td>59.397</td>
<td>51.625</td>
<td>42.884</td>
<td>34.523</td>
</tr>
<tr>
<td>Error</td>
<td>73.135</td>
<td>59.660</td>
<td>51.640</td>
<td>44.080</td>
<td>34.066</td>
</tr>
<tr>
<td>rake angle</td>
<td>72.323</td>
<td>59.641</td>
<td>51.837</td>
<td>42.246</td>
<td>34.144</td>
</tr>
<tr>
<td>Error</td>
<td>72.711</td>
<td>59.354</td>
<td>52.023</td>
<td>44.079</td>
<td>33.985</td>
</tr>
<tr>
<td>rake angle</td>
<td>72.195</td>
<td>59.900</td>
<td>52.085</td>
<td>44.171</td>
<td>34.048</td>
</tr>
</tbody>
</table>

Fig. 5 Boxplots of force by rake angle

Fig. 5은 경사각에 대한 수준별 데이터의 분포를 나타낸 밸디어그램이며, 4수준인 경사각 8°에서 절삭력 분포가 가장 낮다는 것을 보여주고 있다.

Table 7 ANOVA for regression model on rake angle

<table>
<thead>
<tr>
<th>Factor</th>
<th>S</th>
<th>Φ</th>
<th>V</th>
<th>F</th>
<th>p&lt;0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>rake angle</td>
<td>1056.47</td>
<td>264.12</td>
<td>4090.2*</td>
<td>5.19</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>0.32</td>
<td>5</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1056.79</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8 ANOVA for regression model on rake angle

<table>
<thead>
<tr>
<th>Factor</th>
<th>S</th>
<th>Φ</th>
<th>V</th>
<th>F</th>
<th>p&lt;0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>rake angle</td>
<td>3992.12</td>
<td>1136.71</td>
<td>172.493*</td>
<td>2.84</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>316.30</td>
<td>41</td>
<td>7.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4308.42</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9 Tool wear on rake angle

<table>
<thead>
<tr>
<th>rake angle</th>
<th>20°</th>
<th>θ*</th>
<th>5°</th>
<th>8°</th>
<th>10°</th>
</tr>
</thead>
<tbody>
<tr>
<td>wear</td>
<td>10gm</td>
<td>8gm</td>
<td>6gm</td>
<td>2gm</td>
<td>4gm</td>
</tr>
</tbody>
</table>

Table 8는 경사각에 대한 절삭력 변동을 예측하기 위한 다차 선형 회귀 분석 모델의 유의성을 보여주고 있다. 추정한 1, 3차 회귀식은 모두 유의하지만, 회귀식에 의하여 설명되는 결정계수가 92.7%인 3차 회귀식인 \( y = 0.1x^3 + 0.12x^2 - 3.27x + 60.35 \)이 더욱 적합하다.
Table 9은 경사각에 따른 긴급 공구마모를 보여 주고 있다. 경사각이 크면 점 매질이 용이하고 점과 공구사이의 마찰력을 줄일 수 있어 절삭력이 감소한 다. 경사각이 점속 증가함에 따라 절삭력은 감소하 다가 10°에 도달하였을 때는 절삭력은 에 비하여 증가하였다.

4.3 점속 길이
Table 10과 11은 길이의 길이에 따른 절삭력의 변동 및 분산분석을 한 결과를 보여주고 있다.

Table 10 Cutting force variety of cutting edge length

<table>
<thead>
<tr>
<th>Force experiment</th>
<th>1.8mm</th>
<th>3.8mm</th>
<th>5.8mm</th>
<th>7.8mm</th>
<th>9.8mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.052</td>
<td>42.562</td>
<td>64.345</td>
<td>80.182</td>
<td>75.873</td>
</tr>
<tr>
<td>2</td>
<td>22.267</td>
<td>42.576</td>
<td>64.150</td>
<td>82.941</td>
<td>83.905</td>
</tr>
<tr>
<td>3</td>
<td>22.101</td>
<td>42.032</td>
<td>63.638</td>
<td>85.177</td>
<td>88.507</td>
</tr>
<tr>
<td>4</td>
<td>21.769</td>
<td>42.038</td>
<td>62.990</td>
<td>87.362</td>
<td>91.025</td>
</tr>
<tr>
<td>5</td>
<td>21.099</td>
<td>41.857</td>
<td>63.395</td>
<td>89.279</td>
<td>92.943</td>
</tr>
<tr>
<td>6</td>
<td>21.669</td>
<td>41.694</td>
<td>63.353</td>
<td>90.451</td>
<td>92.827</td>
</tr>
<tr>
<td>7</td>
<td>21.787</td>
<td>41.596</td>
<td>62.916</td>
<td>91.020</td>
<td>90.725</td>
</tr>
<tr>
<td>8</td>
<td>21.605</td>
<td>41.533</td>
<td>62.639</td>
<td>91.822</td>
<td>91.992</td>
</tr>
<tr>
<td>9</td>
<td>21.908</td>
<td>41.869</td>
<td>62.473</td>
<td>92.460</td>
<td>94.568</td>
</tr>
</tbody>
</table>

Table 11 ANOVA for cutting force on cutting edge length

<table>
<thead>
<tr>
<th>Length</th>
<th>S</th>
<th>F</th>
<th>V</th>
<th>F</th>
<th>F(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8mm</td>
<td>3067.8</td>
<td>7660.7</td>
<td>723.82</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td>3.8mm</td>
<td>423.8</td>
<td>10.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8mm</td>
<td>3102.6</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6 Boxplots of force by cutting edge length

길이 길이는 유의수준 95%내에서 유의하다. Fig.
6는 절삭력의 분포를 박스플롯으로 나타낸 것이 다. 길이가 3mm, 5mm, 7mm, 9mm, 11mm, 13mm, 15mm, 17mm, 19mm, 21mm의 절삭력은 대체적으로 상향적인 추이를 나타내고 있다. 길이가 5.8mm에서 7.8mm로 증가하였을 때는 분산량의 절삭력 증가추세를 나타내었다. 분산량이 낮은 절삭력이 나타나는 이 시기에 점속 길이의 기존으로 삼고 공구마모를 설계 시 기존으로 수행하는 기존으로 한다.

Table 12은 경사각의 길이를 위한 다차 선형 회귀 분석 모델의 유의성을 보여준다. 3차 회귀식인 

$y = -0.25x^3 + 3.82x^2 - 6.09x + 22.37$ 가 적합하다.

Table 13 Tool wear on cutting edge length

<table>
<thead>
<tr>
<th>Length</th>
<th>1.8mm</th>
<th>3.8mm</th>
<th>5.8mm</th>
<th>7.8mm</th>
<th>9.8mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear</td>
<td>8.8μm</td>
<td>9μm</td>
<td>9μm</td>
<td>9μm</td>
<td>16μm</td>
</tr>
</tbody>
</table>

4. 결론

효율적인 금형공구를 위하여 공정공구의 설계 시 실험계획법을 적용함으로써 경사각과 길이에 따른 절삭력과 공구마모에 대한 영향을 검토하였다.

1) 유의수준 95%내에서 경사각과 길이에 그리고 경사각의 길이의 방향에 따라 절삭력과 공구마모의 상관성은 비교적 큰 차이가 생겼으며 절삭력은 추정된 회귀식을 이용하여 90%결정계수 안에서 예측이 가능하였다.

2) 경사각과 길이의 변화에 따라 절삭력과 공구마모 상태는 비교적 큰 차이가 생겼으며 절삭력은 추정된 회귀식을 이용하여 90%결정계수 안에서 예측이 가능하였다.

3) 실험계획법에 의한 최적설계를 통해서 insert type 공정공구를 이용한 런데블 금형공구에서 정밀도, 생산 효율성을 향상시켰다.

참고문헌

