37-Channel adaptive optics system preliminary report

Preliminary Reports of a closed-loop 37-Channel Adaptive Optics System

I. 서론

OKO에서 구입한 37 Channel 멤브레인 변형 거울 및 자체 개발한 Shack-Hartmann sensor를 각 각 변형거울 및 파편센서로 적용하는 가시광 적응광학 시스템을 구성하였다. 적응광학 시스템은 자체 개발된 제어 알고리즘을 구현한 컴퓨터의 제어기를 통하여 각 각 계획으로 폐쇄로에서 예상된 성능을 확인하였다. 본 발표에서는 가시광 영역에서 작동하는 적응광학 시스템의 각 구성요소 및 폐쇄로의 초기 성능을 보고한다.

II. 폐쇄로 구성

개발된 가시광 적응광학 시스템은 다음과 같이 요약할 수 있으며, 구성은 그림 1과 같이되었다. (실제 구성은 한정된 광학 데이블 크기에 제한을 받아 Folding Mirror가 추가되어 있다.)

- 변형기능: OKO-DM 37Channel membrane
- 파편센서: 자체 개발 Shack-Hartmann Sensor
- 제어 시스템: 자체 개발
- 제어 알고리즘: Gain Control
- Display: 자체 개발 프로그램

폐쇄로 및 개별로의 시스템 성능 확인을 위하여 수차 발생 장치를 광 경로 상에 배치하였으며, 시간으로 변동하는 Dynamic 수차는 수차가 존재하는 Wedge Glass를 일정한 주파수로 회전하여 요사하였다.

![Diagram of the adaptive optics system](image)

* Numbers in () are alignment sequences

그림 1. 가시광 적응광학 시험 시험 구성도
III. 제어 알고리즘 및 제어 순서

37 Ch의 변형 거울 구동은 그림-2에 표현되어 있는 일반적인 Gain Control을 사용하였으며, 폐회로 및 개회로 제어신호는 다음과 같이 주어질 수 있다. 여기서 \(a(t) \)는 변형 거울을 구동하기 위한 구동 행렬이며, \(H \)는 그림 2에 표현되었듯이 각 구동기의 영향함수 (Influence function)으로 구성된 Configuration Matrix이며, \(K \)는 폐회로의 제어 이득값이고 \(e(t) \)는 외부 센서에서 감지되는 잔여 수차를 나타낸다.

\[
\begin{align*}
(\text{개회로 제어 신호}) & \quad a(t) = (H^T H)^{-1} H^T \phi(t) \\
(\text{폐회로 제어 신호}) & \quad a(t + \Delta t) = a(t) + K (H^T H)^{-1} H^T e(t)
\end{align*}
\]

\[
\hat{\phi}(R\rho, \theta) = \sum_{i=1}^{m} a_r(\rho, \theta)
\rightarrow \hat{\phi} = Ha
\]

![그림 2. 제어 알고리즘 개념도](image)

IV. 제어 결과

그림 3 및 그림 4는 회전하는 Wedge glass에 대하여 폐회로가 작동하였을 때의 시스템 성능과 그 때의 잔여 수차 함수를 보여주고 있다.

![Wedge를 침체시켜 이전하게 시킨](image)

(Compensated!)

\[
\text{(Wedge 이동) (Measurement error)}
\]

그림 3. 회전하는 Wedge glass에 대한 폐회로 작동 성능

![그림 4. 폐회로 작동 후 잔여 수차](image)

그림 4. 폐회로 작동 후 잔여 수차

81