도시경관계획을 위한 3D 공간정보 구축 및 활용 제안
-An Alternative Proposal of the 3D Spatial Data Construction & Utilization for Cityscape Planning-

최봉문, 임영택, 한인구, 조병호
목원대학교

Choi Bong-Moon, Lim Young-Taek, Han In-Gu,
Cho Byung-Ho
Mokwon Univ.

요약
본 연구는 도시계획 및 실계에 병목되는 그래픽관련 어플리케이션을 활용한 3차원 공간정보의 구축 방법과 신규 도시개발
이나 도시경관계획에서 3D 공간정보 활용에 이어한 마천력시뮬레이션 활용 방법을 제안하는데 목적이 있다. 3차원 공간정보
구축은 기 구축된 GIS DB(도시지리정보, 건축물 데이터등)와 위성영상은 활용하여 도시경관계획에 필요한 3D 공간정보를
구축하였다. 그렇게 구축된 공간정보의 활용 방안으로 도시경관 사례에서 제작 및 개발 사례로, 도시경관 사례에서의 활용
이론적 사례가 있고, 도시계획자원 이용사례에 대한 사례와 3D 사례를 통한 활용을 통한 품질 사례에 적합한 경관시뮬레이션을 수행하였다.
특히 3D 공간정보의 구축 및 활용이 도시계획의 토큰 사례에 따라 체계적 차원, 도시계획 사례, 지구차원에서의 사례와 사례의 활용을 통한 도시경관계획과
 다양한 사례 및 개발에 대한 사례와 사례를 위한 활용이 적절하고 간편한 3D 공간정보의 구축 및 활용이 가능할 수 있었다.

I. 서론
도시경관계획이란 종합적인 도시경관계획의 시리즈로, 도시가 지향하는 경관평형성을 명확한 목표나 지침을 수립하
는 것을 말하며, 일반적으로 도시의 특성 및 패턴 파악, 목표설
정, 도시경관의 공간구조와 경관 특성을 기반 면적 지구
패악, 비장 비장한 한 장비물과 시기에 개발 등을 포함한다.
특히 도시경관계획에서 경관평형성의 목표나 지침 수립을 위
해서는 그 바탕이 되는 현실 도시공간구조와 특성의 파악이
가치 중요하며, 특히 오늘날과 같이 복잡화된 도시공간구조
패악을 위해서는 3D 공간정보에 기초한 분석이 요구되며, 경
관계획, 관리, 평가에 관련한 많은 연구에서 3D 공간정보를 활용
한 분석을 시도하고 있다[2][3][4][5][6]

또한 각종 도시계획사례의 관상정평형에 있어서 3D 공간정보
에 기초한 경관시뮬레이션을 시도하고 있으며[7][8]. 이를
위해서는 우선적으로 개발사례의 전후의 비교를 위한 현실
적 해석이 요구된다.

우리나라의 경우 1995년부터 NGIS 기본계획을 수립하여,
전국단위의 각종 GIS 기반 DB가 이미 상당부분 구축되어 누
구나 구여해 활용할 수 있는 상황에 있으며, 또한 최근 다양
한 관광의 노동성상 흥미로운 것이란 것이었다. 무엇보다도 최근
 컴퓨터 SW 및 HW의 성능이 급격한 발전을 이루며 개인
PC(Personal Computer)에서 GIS DB 및 교환실 영상처리가
가능하다.
무엇보다도 2006년 현재 국내에 개발 중인 새로운 경관정보
시스템이 개발되고 있는 것으로 보이며, 경관의 관리 및 집행에 있어서 비과적 관점을 통한 주변에 대한
이해와의 폭을 넓힐 수 있는 활용이 도출된 스킬로써 3차원
공간정보와 경관시뮬레이션 활용이 더욱 필요할 것으로 보
인다.

이러한 배경에서 본 연구는 기 구축된 GIS DB 및 위성영상
을 이용한 도시경관계획을 위해 간편하고 효율적인 경관시뮬
레이션 DB 구축 방법과 이를 기초로 현실성 있는 경관시뮬레이
션을 구현하고, 도시경관계획에서의 활용을 제안하였다.

II. 이론적 고찰
1. 도시경관계획과 경관시뮬레이션
도시경관계획은 도시의 개개의 건축이나 공공시설을 디자인
하는 것이 아니라 그러한 것들의 지침으로서 지역 전체로서
공유할 수 있는 구성 사례라이나 디자인 전략을 마련하는 마
스터플랜이라 할 수 있다[1]. 이러한 경관계획을 위해서는 3차
원적인 도시공간구조와 그로부터 형성되는 경관 특성을 파악
할 필요가 있는데, 3D 공간정보를 기초로 한 경관시뮬레이션
은 이를 위한 흥미로운 도구가 될 수 있다.
경관시뮬레이션은 경관을 다양한 방법 및 매체를 사용하여 시각적으로 나타내 보이는 시각 시뮬레이션 분야로 스케치, 사진, 컴퓨터 그래픽을 이용한 방법 등 다양한 방법이 있다. 이들 경관계획과 관련하여 표현하면, 제안한 계획이나 특정여건에 대한 미래의 경관을 실제의 다른 경관을 포함하여 투시적 방법으로 표현한 그림 또는 영상 혹은 그러한 것들은 만들어 내는 작업이라 할 수 있다.

2. 3D 공간정보 활용 경관시뮬레이션

3D 공간정보는 2D의 위치정보(\(X, Y\))와 높이, 즉 Z값으로 표현되는 기하학적 정보와 대상 객체의 속성정보를 포함한다. 이러한 3D 공간정보는 현실세계를 가상의 컴퓨터상에 추상화 및 일반화를 통하여 실체와 유사하게 표현할 수 있게 하는 정보이다. 이러한 3D 공간정보를 활용한 분석은 업계적 경량적인 정보와 분석을 가능하게 하여 합리적인 의사결정과정을 지원할 수 있게 한다.

![그림 1. 3D 공간정보의 필요성](image)

2D 공간정보가 편리하게 추상적으로 표현한다면, 3D 공간정보는 3차원의 위상관계를 정확하게 표현할 수 있기 때문에 2차원적 해석으로는 한계가 있는 공간분석, 지형모델링, 지형시뮬레이션 등을 가능하게 한다.

 특히 GIS 사업을 통한 구축된 기본 GIS DB(수치지형도 등)와 GIS 관련 소프트웨어(ArcGIS 등)를 활용하면 수치로 모델링(3D DEM)을 손쉽게 생성해 볼 수 있다. DEM은 지형특성의 공간적 분포를 수치적으로 표현한 것으로서 컴퓨터를 통한 다양한 응용처리가 가능하게 도로 및 철도의 계획, 설계 등의 사용되고 있다.

 DEM을 이용한 3차원 경형모델링의 방법에는 격자형(3D GRID)에 의한 방법 및 물리적각도(3D TIN)에 의한 방법으로 구분할 수 있다. GRID에 의한 방법은 DEM 데이터에서 표현된 고도값에 단순 산형정보를 적용하여 3차원 지형을 모델링함으로서, 건축과 편지 모델링에 적합한 반면, 데이터량이 많고 공간이 짧은 지형특성을 정확하게 표현하기 곤란한 단점이 있다.

 TIN에 의한 방법은 DEM 데이터로부터 지형적으로 의미 있는 위치의 점들을 표현함으로써 지형의 모습을 좀 더 사실적으로 표현할 수 있다는 장점을 가지고 있어 실제적인 지표 모델링 및 디테일에 많은 사용되고 있으나, 자료량을 줄이기 위한 의미없는 도출 과정이 필요하고, 전체 단계에서 계산시간이 많이 소요되는 단점이 있다.

 따라서 DEM이나 TIN으로 생성된 3D 공간정보는 경관계획시 필요하게 되는 용도 및 요구하는 정밀도 등을 고려하여 다양한 경관시뮬레이션에 활용할 수 있다.

3. LOD(Level of Detail)와 도시경관계획

LOD의 개념은 1976년 Clark에 의해 처음 도입되었으며, 주로 컴퓨터 그래픽 분야에서 복잡한 물체나 환경(scene)을 신속하게 편리하게 자동화하여 사용되었다. 현재 컴퓨터 그래픽 분야에서 적용되고 있는 LOD 방법은 Discrete LOD, Continuous LOD 및 View-dependent LOD 등 3가지로 구분된다.

 Discrete LOD는 현재 가장 많이 사용되는 방법으로 각각의 물체를 단단하게 설정하여 상황에 따라 표현하는 방법이며, Continuous LOD는 Discrete LOD에서 출발하였지만 Discrete LOD는 일부 각각의 물체를 단단하게 설정하는 대신 상황에 따라 실시간으로 표현하는 방법이다. Continuous LOD에서 발견한 View-dependent LOD는 물체를 빠르게 시각에서 실시간으로 표현하는 방법이다.

 이러한 LOD들은 도시경관계획의 차원(평면규제상황, 도시경 관계획, 지구경관계획 등)과 연계한 데이터 구축 및 활용이 가능하고, 경관계획 및 계획의 시뮬레이션에 있어서 효용성을 높일 수 있는 것으로 기대된다.

4. 3D 공간정보 및 응용소프트웨어 활용 연구

3D 공간정보 및 응용소프트웨어를 활용한 관련 연구는 경관환경구, 경관시뮬레이션, 경관관리 및 규제 측면에서 활발하게 이뤄지고 있는 것으로 보인다. 경관환경 평가 측면의 연구는 우주 시뮬레이션의 작성법으로 스키저, 모형, 조각도, 사진스케치, 사진촬영, 웨이드, 메핑 등의 2차원적 평가방법이 주로 이루어졌으며, 응용소프트웨어를 활용한 경우도 대부분이 2차원적인 것이 대부분이었다(9,10,11). 3D 공간정보 및 소프트웨어를 이용한 경관 관리 및 규제에 대한 연구에 CADD를 활용한 도시경관 시뮬레이션의 건축물 규제방안에 관한 연구(13), 보문산 공원주변 도시경관 보존을 위한 건축규제 개발 연구(12), 도로본선 본 산 조경관련의 관리기준에 관한 연구(4) 등이 있다. 공간정보화 GIS 소프트웨어를 이용한 연구 환경경향평가서의 경관시뮬레이션에 관한 연구, 3D GIS를 활용한 도시경관 시뮬레이션에 관한 연구, AHP 기법을 활용한 경관평가 작성에 관한 연구, GIS를 활용한 경관평가에
관련 연구 등이 있다[5][13][14][15]. 최근에는 국적차원에서 3차원 공간정보의 구축과 활용을 위한 연구가 활발히 진행되고 있어[17][18][19], 3D 공간정보 구축 및 기 구축된 GIS DB를 이용한 여러 활용 방법이 도출될 수 있는 것으로 기대된다. 특히 현재 여러 지역에서 지자체의 경관계획 및 건평관리를 위해 3D 경관시스템을 구축활용하고 있으나, 전반적으로 그 구축 수준이나 현실성 정도가 미흡할 만한 수준에 이르지 못하고 있는 실정이다[20][21][22].

III. 3차원 공간정보 구축 및 활용

1. 3D 공간정보 구축

그동안 경관과 관련하여 다양한 시뮬레이션 기법이 있으나, 최근처럼 실제의 3D 공간에 대한 사실적인 시뮬레이션 요구가 높아지면서 스케치, 해드, 사전성성 등 기존의 방법들은 현재에 다를 수밖에 없었다. 비록 CAD와 3D MAX의 비중이 높아지고 있지만, CAD, 3D MAX 등을 이용한 시뮬레이션은 데이터 구축과 관리에서 비교적 오랜 시간과 비용이 소요된다는 문제점이 있었다. 이에 본 연구에서는 도시경관계획을 위한 3D 공간정보 구축을 위한 비교적 간편한 방법 제안하였다. 이의 핵심은 기 구축된 NGIS DB(수지 지형도와 재구조사업 Data)와 고화질 위성영상성을 이용한 경관시뮬레이션을 위한 3D 공간정보 구축이다.

![그림 2. 3D 공간정보 구축 및 시뮬레이션 과정](image1)

경관계획을 위해 요구되는 기존적인 3차원 공간정보는 지형 데이터, 위성영상, 건물데이터, 기타 속성 데이터 등이다. 종전의 지형 데이터 구축은 지형모델이 구축된 후 지반경과 엽리로 통한 건물들의 바닥높이를 부여하는 작업이 필수적으로 따랐다. 그러나 ArcGIS(ver. 9.0의 Arcscene 기능)을 활용하여 건물들의 지반위를 부여하지 않아도 NGIS에서 구축된 수치 지형도를 이용하여 GIS 소프트웨어로 생성한 GRID DATA를 지반용으로 적용하여 데이터를 용이하게 구축할 수 있다. 즉 수치지형도(1500)에서 동고 레이어를 추출하여 GIS를 이용하여 DEM을 생성한다.

이후 보다 현실적인 시뮬레이션을 위해 IKONOS 영상을 이용한 담평(mapping)을 한다. 담평은 우선 DEM의 Cell size는 결정하고, 기하보정, 정상보정을 통한 영상정보를 보정한다. 본 연구에서는 경관시뮬레이션의 현실감 있는 표현을 위해 TIN에 의한 DEM을 이용하였다. 단점으로 지적할 수 있는 계산사양의 부족에 따른 디지털 클립하여 사용 가능성, 장기적인 측면에서는 좀더 효과적이라는 판단된다.

![그림 3. 3차원 공간정보(DEM과 위성영상)](image2)

DEM과 위성영상의 데이터에 이용하여 기본 지형이 완성되면, NGIS에서 구축된 재구조사업 수치DB와 수치지형도로부터 얻어진 건물들의 공간정보를 연결하여 도시경관계획을 위한 기본적인 3D 건물물 공간정보를 만들어 내었다. 기존의 경우 GIS에서의 멀티패치(multi-patch) 형식의 셰입(shape)이나 Max와 CAD 같은 3D 프로그램을 이용하여 3차원 건물물의 일체성이 생성하였으나, 이는 3D 데이터의 생성, 렌더링 속도, 관리에 있어 어려움이 있다. 그러나 본 연구에서는 세부조 사업의 수치(건물물 충수)와 수치지형도의 건물물에 연산하여 간편하고 손쉽게 작성하였다. 이는 기존의 CAD 혹은 GIS의 자료를 가공할 필요 없이 입력된 수치만으로 건물을 표현하던 방식이 멀리 벗어나 각 기존의 방식보다 유용하다고 판단된다. 이러한 점을 개발계획이나 저구단위계획 등에서 일정 지구/지역 내 건물물의 형태와 높이 변화 등에 있어도 속성 데이터를 쉽게 변환시켜 각 단위들의 비교와 관리하고, 보다 빠르게 결과를 확인할 수 있다.

단면 건물물 모델링은 광범위한 지역을 대상으로 하기 때문에 개개의 건물물을 사실적으로 표현하는 것은 도시기정계획의 요구조건(장식, 도시, 구조적 차이 등)에서 볼 때 불필요하고, 현실적으로 불가능하다. 그러나 도시의 랜드마크 건물물 등 세밀한 표현이 요구되는 건물물의 경우 간략화된 일반 건물물의 별도로 구성하여 Max와 같은 3D 프로그램을 이용하여 별도로 작성하여 GIS의 MDB형태의 데이터로 구축하였다.
2. 구축된 3D 공간정보의 경관계획 활용

구축된 3D 공간정보를 경관계획에 활용하기 위해 View-dependent LOD의 방법을 이용하여 아래와 같이 광역적, 도시적, 지구적 차원으로 구분하고, 인공적인 요소(건물, 도로, 철도), 자연적인 요소(지형, 인간의 요소, 자연의 요소)를 조합하여 경관시뮬레이션을 수행하였다.

또한 경관계획이나 평가에 있어서는 특정 지점에서의 조망이나 경로 따른 파노라마적 영상이 중요하다. ArcGIS는 이러한 기능을 제공하며, 개발 전후 건물의 변화에 따른 시뮬레이션, 위치나 메시의 변화, 건물 높이 변화, 색상변화 또는 패턴 등을 담리하는 것이 가능하다. 또한 규약을 위한 건축물의 높이, 건축물의 너비와 전면폭 등과 같은 다양한 규약을 현실장 있게 시뮬레이션에 볼 수 있었다.

설정한 LOD를 이용하여 대진시 중구 대홍동일원에 대하여 3차원 공간정보를 구축하고, 주거환경개선사업 개발 전/후 상황에 대한 경관시뮬레이션을 수행하였다.
IV. 결론

본 연구는 3D 공간정보의 구축에 있어서 새로운 방법론을 제안한 연구는 아리나 기존에 범용적으로 활용할 수 있는 GIS DB와 소프트웨어를 기반으로 하여 경관계획 및 도시계획에 있어서의 현실적이고 실제적인 경관이나 공간상의 특성 과학을 위한 간편한 데이터 구축 방법과 시스템을 하였다는데 의미가 있다. 즉 경관계획평가나 개발사업 평가 등을 위해 업정단 비용과 시간을 투자하지 않고도 기존의 소프트웨어와 DB를 활용하면 효율적이고 사실적인 시뮬레이션이 가능함을 보였다. 다만 본 연구에서 제시된 데이터 구축 방법론은 가장 핵심적이거나 유일한 방법은 아니며, 3D 공간정보의 구축과 다양한 활용에 대한 심도있는 후속 연구가 필요하다. 특히 3D 공간 정보는 경관계획에 있어서 경관규제, 평가, 관리로 이용이 유용한 수단으로 활용될 수 있으므로 이에 대한 후속 연구가 필요할 수 있다.

参考文献