의료환경에서 SIP을 이용한 위치관리시스템에 관한 연구
A Study of Location Management System using SIP in Medical Environment

김경욱, 박용인
광운대학교

요약
RFID 기술은 물리 개체에 부착된 태그의 정보를 무선으로 인식하여 처리 할 수 있는 융합서비스 컴퓨팅의 가장 핵심이 되는 기술이라고 할 수 있으며, RFID 시스템에서 무엇보다도 중요한 것은 개체의 위치 추적이다.
이러한 위치 추적 및 서비스는 EPCglobal network에서 제안되고 있지만, 이 시스템을 위한 특별한 장비와 시스템이 필요하며, 다른 시스템과 호환성을 문제점으로 가지고 있다. 본 논문에서는 이러한 문제점을 개선하고자 인터넷 표준 프로토콜인 SIP을 사용하였으며, 병원환경을 대상으로 응급환자 발생시, 담당 의사의 위치를 파악하는 시나리오를 통해 확인하였다.

Abstract
A RFID technology that process information of tag attaching in physical object by a point technology that enable this Ubiquitous computing through radio frequency is noted. One of our most important, location tracking for object in RFID system. With this in mind, proposed EPCglobal network gives the location tracking and location services. but, RFID system has the drawbacks. That is special construction and components be positively necessary for RFID system. The service difficult to integrate other service and it increases costs considerably. This thesis gives location service using RFID based on SIP in hospital.

I. 서 론
RFID 기술은 물체 식별을 위해 가장 잘 알려진 시스템이며, 위치를 관리하는 프레임워크와 같이 동작하여 물체의 식별 및 위치 추적 시스템을 구축할 수 있다. 대표적인 RFID 관리 시스템은 EPCglobal 사에서 제시한 EPCglobal network이다. EPCglobal network는 EPC 코드와 RFID 기술을 근간으로 하며, 개체 정보 교환에 표준 프레임워크를 이용함으로써 개체 이동의 자동화, 추적성 및 보안기능을 제공한다[1-8]. 본 논문에서는 병원환경에서 모든 개체에 대한 위치 관리 시스템을 제안한다. 제안한 시스템은 인터넷 표준 프로토콜을 완벽하게 호환 가능한 호 제어 프로토콜인 SIP(Session Initiation Protocol)를 기반으로 제안하였다. SIP은 신호 프로토콜로서 IP 기반 밀리미터 대장은 제어하기 위해 IETF에서 제안되었다. SIP을 밀리미터 대장으로 설정, 수정, 종료로 할 수 있는 응용 계층 제어 프로토콜로 널리 쓰이고 있다. 이러한 세션 관리하는 기능과 더불어 SIP는 인터넷에서 호스트의 이동성을 지원한다[9-11]. 제안한 시스템은 이러한 SIP의 이동성 지원 특성을 활용하여 병원환경에서 의사, 환자, 신생아, 의약품등에 RFID 태그를 적용하여 실시간 위치를 추적할 수 있는 시스템을 제안하였다. 제안한 시스템을 적용하기 위해서는 RFID 시스템과 SIP을 연동할 수 있는 새로운 시스템이 필요하게 된다. 이를 위해서 일반적인 RFID 리더의 기능과 추가적으로 SIP user agent 기능을 추가하였다.
본 논문의 구성은 다음과 같다. 2장에서는 관련 연구로 SIP의 기본 개념 및 동작 과정, EPCglobal network에 대해 설명한다. 3장에서는 제안한 병원환경에서 SIP기반 RFID를 이용한 의료서비스에 대해 설명한다. 4장에서 결론 및 고찰에 대해 설명한다.

2. 관련연구
1) SIP(Session Initiation Protocol)
SIP는 간단한 텍스트 기반의 응용 계층 시그널 프로토콜로 하나 이상의 세션을 생성, 수정, 종료한다. 그리고 SIP는 클라이언트/서버 구조로써 밀리미터 화의 동의 미디어 서비스 및 사용자의 이동성을 지원하며 텍스트 기반임에 대해 확장성이 용이하다.
SIP의 구성 요소는 크게 UA(User Agent)와 SIP 서버로 나뉜다. UA는 사용자가 Invite 요청에 대답을 보내서 호를 연결할 수 있도록 지원되는 종말 엔터티로서 UAC(User Agent Client)와 UAS(User Agent Server)로 나뉘어 동작한다. 호 연결에 있어 UAC는 사용자의 호 연결 요청을 개시하고, UAS
는 요청을 수신하여 응답을 보내는 기능을 수행한다.

일반적으로 SIP 포트로프는 SIP 서버의 호 설정 및 호 해체에 사용할 메시지를 정의한다. 이러한 메시지는 메소드를 이용하여 전달되며, Invite, Ack, Cancel, Bye, Register, Option의 SIP 표준에서 제공하는 6 가지 메소드가 있다. 이와 같은 메소드가 request로 서버에 보내지며, 서버는 이에 해당하는 코드 response로 보내게 된다.

SIP는 단말이동성을 위한 위치 관리 기능을 제공한다. 모바일노드가 새로운 네트워크로 등록 되었을 때, SIP 등록 메시지를 전달하기 위한 위치를 동록하게 된다. 등록 서버는 등록요청에 기정이거나 수락 할 수 있다. 수락 할 경우 SIP 서버는 새로운 위치 정보를 위치 데이터베이스에 입력하여 할 수 있게 된다. 모바일노드가 새로운 네트워크로 등록 되었을 때, SIP 등록 메시지는 위치정보 업데이트를 반복하게 된다. 업데이트된 위치 정보는 UA가 새로운 위치 정보를 주고받는 동안에 프로세스 바에 의존하게 된다. SIP 등록 메시지는 모든 데이터베이스에게 전달된다. 이와 같은 이유로 전체 네트워크를 빠르게 위치 데이터베이스를 업데이트할 수 있는 전송이 목표이다. Mobile IP는 영구 IP 주소를 CoA로 사용하는 임시 주소로 대체하게 되지만, SIP을 이용한 이동성 관리를 구성할 때 ID, 호스트이름을 이용하여 임시주소 바인딩이 가능하다.

SIP의 이동성은 다음과 같이 단언, 개인, 서비스 이동성이 가능하다. SIP이란 이동성은 안정성이 떨어지지만, 현재 존재하는 OS에 성능을 추가하거나 홈 에이전트나 동적 DNS의 설치를 요구하지 않는다. 최소한 인터넷 사용자들이 스스로 IP 이동을 할 수 있다.

2) EPCglobal Network

EPCglobal network는 EPC 코드와 RFID 기술을 이용하여 개별 제품 동정으로 식별하고 식별된 개별 정보를 인터넷을 통해 소비자에게 공유함으로써 국외의 상품 이동 현상을 실시간 추적하도록 할 수 있는 시스템이다. 그림과 같이 상품 정보 교환은 표준 프레임워크를 이용함으로써 공급체인인 가계상을 향상시키고 상품 이동의 자동화, 추적성 및 보안능력을 강화시킨다. 기업은 EPCglobal network를 활용함으로써 상품 이동 정보를 실시간으로 파악할 수 있게 되어 상품 손실 최소화, 주문의 신속한 처리, 소비자 기반에 따른 대응능력 향상 등의 효과를 기대할 수 있다. EPCglobal network의 활용 범위는 컨테이너 및 캐리어(버스) 등 물류용기에서부터 단품에 이르며, 산업별로 일반 소비자 상품, 보건의료, 정부조달물자, 군수물자, 부품 등 다양한 산업에 적용 가능하다.

3) 제안하는 시스템

제안하는 시스템 구조는 그림 3에 나타난다. 일반적인 SIP 구조는 SIP 서버와 UA로 구성된다. SIP 서버는 기능에 따라 다시 프록시, 리다이렉트, 등록 서버로 분류된다. 여기서, 등록 서버는 이동성 지원하기 위해 위치정보를 저장하고 있다.
논문의 내용은 RFID 태그의 위치를 detetion하고 있다. 각각의 RFID 태그는 자신의 로컬 도메인에 로컬 등록 서버를 가지고 있다. RFID 태그가 외부 도메인으로 이동할 때, RFID 태그는 자신의 현재 위치를 로컬 등록 서버에게 알리기 위해 위치 업데이트를 수행한다. 로컬 등록 서버는 항상 RFID 태그의 현재 위치를 저장하고 있고, 따라서 실시간 위치 추적 과정에서 등록 서버를 참조함으로써 RFID 태그의 현재 위치를 알 수 있게 된다. 또한 UA는 UAC와 UAS로 나뉘어진다. UAC가 Invite 메시지를 보낸으로써 SIP 트랜잭션을 시작하는 반면에 UAS는 해당하는 상태 코드(status code)를 담고 있는 SIP 응답 메시지를 보내게 된다. 기본적으로 UA는 SIP 세션을 만들기 전에 자신의 위치를 등록 서버에 등록한다. 그러나 RFID 태그는 재현된 농력만 가지고 있으며, RFID 태그가 SIP 인수를 스스로 수행할 수 있을 것이라고 가정하기 어렵다. 그러므로 이러한 능력을 부여하기 위해 우리와 일반적인 RFID 라디오의 기능과 사용 기능을 모두 가지고 있는 새로운 시스템 MFR(Multi-Function Reader)를 제안한다. 이 시스템은 RFID 태그의 정보를 받아 들이면서 자신이 가지고 있는 IP 주소와 함께 RFID 태그의 정보인 EPC 코드를 등록 서버에 전송하여 위치를 등록한다. 등록된 RFID 태그 정보는 태그가 다른 도메인으로 이동될 때마다 실시간 위치 정보가 이루어진다. 또한 등록 서버에 등록된 RFID 태그의 위치를 추적하기 위해 위치확인 PC는 RFID 태그의 현재 위치를 관리하고 있는 등록 서버에 register lookup을 의뢰하게 된다. lookup을 통해 MFR의 위치를 확인하면, 위치확인 PC는 해당 RFID 태그의 특정 MFR에 Invite 메시지를 보내게 되고, 이를 받은 MFR은 이에 대한 응답으로 태그의 현재 위치를 알리주게 된다.

![그림 3. 제안하는 시스템 구조](image)

MFR는 재현된 능력을 가지고 있는 RFID 태그를 대상으로 SIP 시그널링을 담당하는 개체이며, IP 주소와 SIP-URL을 가지고 있다고 가정한다. SIP구조의 관점에서, MFR는 SIP 클라이언트의 한 종류이며, RFID 태그 정보 수집, 태그 정보 필터링, 태그 위치 등록 및 확인, SIP UA의 기능을 가진다. 등록 서버는 RFID 태그의 현재 위치를 등록 받는 서버로서 등록 메시드네의 EPC 코드와 Contact 채드, Expire 채드들의 조합으로 현재 사용자의 위치에 대한 동록, 제거, 삭제, 조회 등의 기능을 담당한다. RFID 태그로부터 등록 받은 정보는 등록 DB에 저장되며, 이후 프록시 서버나 리다이렉트 서버 등에 로케이션 서비스를 제공하기 위해 사용된다. MFR의 URI와 EPC 코드, 하나 이상의 contact address에 대한 바인딩(binding) 정보가 DB에 기록되며, 이후 프록시 서버가 도메인의 위치 확인 서비스를 제공해야 할 request 메시지를 수신하게 되면 Request-URI와 일치하는 URI의 contact address로 Request 메시지를 전달한다. 그림 4와 그림 5는 각각 태그의 위치 등록과 태그의 위치 추적에 관한 절차를 보여준다.

![그림 4. RFID 태그의 위치 등록](image)

![그림 5. RFID 태그의 위치 추적](image)

지금까지 제안한 시스템을 적용하기 위해 응용화자 발생 시 당당의 위치를 파악하는 시나리오를 그림 6을 통해 설명한다. 시나리오를 위해 당당의 위치에 RFID 태그를 부여하고 A라는 위치에서 B라는 위치로 이동한다고 가정한다. 이러한 가정 하에, RFID 태그를 부착한 의사는 위치의 이동(그림 6(1))으로 현재의 위치를 등록 서버에 등록하게 된다(그림 6(2)), 등록 서버에 등록이 완료되면 등록 서버는 로케이션 서버에 등록된 위치의 정보를 저장하게 된다(그림 6(3)). 이후 병원에서 응급환자가 발생한다고 가정하면(그림 6(4)), 응급환자를 위한 당당의 위치를 찾아야 한다. 의사는 위치를 찾기 위해 위치확인 PC에서 프록시 & 리다이렉트 서버에 Invite 메시지를 전송하게 되고(그림 6(5)), 프록시 & 리다이렉트 서비스
4. 결론 및 고찰

RFID 시스템을 이용하여 개체에 대한 식별은 몇 가지 단점을 가지고 있다. 첫째로, RFID 태그를 관리하기 위해서 EPCglobal network는 자산만의 특별한 구조로 되어 있고, ONS, EPC-IS, RFID 매분면, 리터, 태그등과 같은 특별한 구성요소들이 반드시 필요하다. 반면에 제안한 시스템은 인터넷 표준 프로토콜인 SIP를 이용하기 때문에 기존 네트워크의 수정 없이 그대로 사용할 수 있다는 장점을 가지고 있다. 둘째로, EPCglobal network는 복잡한 옵션에 맞게 시스템을 구성이 되어 있어, 헷갈리거나 무선 인터넷 접속 등 다른 서비스와의 통합이 어렵다. 하지만 제안한 시스템은 인터넷 표준 프로토콜로 구성하고 있는 환경이 우수하므로 어느 서비스와도 통합이 잘 이루어지는 장점을 가지고 있다. 세 번째로, 비용측면에서 상당의 고가의 RFID 장비를 구축해야 하는 단점을 가지고 있다. 하지만 SIP을 이용한 시스템에서는 기존의 인프라와 그대로 이용하기 때문에 추가적인 비용 없이 서비스를 이용할 수 있는 장점이 있다.

현재 U-healthcare에 대한 연구는 미흡한 부분이 많으므로 알려져 있다. 특히 실제 병원 환경 모델을 기반으로 한 시스템의 구현도 미비한 실정이므로 이 부분에 대한 심도있는 연구가 필요하다고 사료된다.