모바일 단말기에서 멀티미디어 콘텐츠를 위한 상황인식 사용자여 모델

노진목*, 오현수, 장혜영, 조성재
단국대학교 정보컴퓨터과학과
jinux.noh@gmail.com*, {pyxis3, chenii, sjcho}@dankook.ac.kr

Context–aware Usage Control Model for Contents on Mobile Devices

Jinuk Noh*, Hyunsoo Oh, Hey-Young Chang, Seongje Cho
Dept. of Information & Computer Science, Dankook University

요 약
본 논문에서는 모바일 DRM(Digital Rights Management) 상의 멀티미디어 파일에 적용할 수 있는 상황인식 기반의 사용자여 모델을 제안한다. 특히, 위치 및 시간 등의 상황 정보에 기반하여 모바일 콘텐츠에 대한 접근 및 사용을 제어하는 "동적인 역할기반 접근제어"(dynamic role-based access control)를 지원하는 프로토콜 시스템을 설계하고 보도에서 구현하여 테스트하였다.

1. 서 론

휴대폰, MP3 플레이어, PMP 등의 이동 단말기 사용이 일반화되면서 벨소리, mp3 파일, 동영상 파일, 게임 등을 포함한 모바일 콘텐츠를 불법 복제하여 배포하는 사례가 점차 증가하고 있다[1][2]. 한국 모바일 게임 산업협회에 따르면 "협회 회원사들의 모바일 게임인의 대상으로 한 조사결과, 모바일 게임의 경우 전체적으로 100여 중 이상의 게임이 불법 복제외 휴대폰에 이식되고 있다. 비협회사의 모바일 콘텐츠까지도 건강하다면 실제 복제 복제 및 유통되는 모바일 콘텐츠는 수만 건에 이르는 것으로 추정된다"고 했다[3].

휴대폰의 대중화로 인해 휴대폰을 이용하는 사례도 늘어나고 있다. 이와 같은 사례로는 2005년에 토익 부정 과 수능 부정 사건이 일어나 우리 사회에 큰 흔적을 주었다[4]. 이는 모두 휴대폰을 이용한 행위이다. 또한, 건강을 위해 휴대폰을 빌려 올라가는 그로 인해 다른 사람들의 개인 공간을 침해하는 현상이 발생하고 있다. 현재는 벨소리 제어, 사용자의 의지에 전적으로 맡기고 있지만 필요한 경우에

 언어적으로 모든 것을 활용할 필요성이 있다. 전원을 처

 단할 필요까지는 없는 극장이나 강의실 같은 장소에서는

 전동이나 무음모드로 전환하고, 중요한 시점이나 이런 면에서도 두드러지지 못한 전원을 반복하는 것이 필요하다.

디지털 콘텐츠를 보호하고 견디고 유용하기 위한 접근제어 및 사용제어 기법들이 많이 연구되고 있다. 전

통적인 접근제어나 신뢰 관리(trust management) 기법

들에서는 주로 서버에서 저장되어 있는 디지털 콘텐츠를 보호하는데 중점을 두었으며 클라우드에 저장되는 디지

털콘텐츠에 대한 접근제어 기능이 미약한 실정이었다.

모바일 DRM에서는 클라이언트에 저장된 디지털 콘텐츠에 대한 접근을 제어하기 위해서는 클라이언트에 접근을 제어할 수 있는 클라우드에서 참조 모니터(client-side reference monitor)가 필요하다. 따라서 MS와의 Palladium이나 Intell이 주도하는 Trusted Computing Platform Alliance(TCPA)와 같이 신뢰되는 클라우드와의 통합 기반을 구축하는 연구들이 진행되고 있다.

모바일 DRM은 사용자들이 동적이고 다양한 환경에 위치하고 디지털 자원들이 다양한 환경에 저장되고 사용된다. 이러한 다양한 동작이 발생하는 환경에서 디지털 자원에 대한 안전한 사용을 위해서는 상황 인식(context-aware)이 필요하다. 상황 인식 기법이란 여러 정보에 따라 적절한 목격, 위치, 시간, 사용자 등 정보를 토대로 사용자의 환경에 맞는 결과를 제어하기 위한 기법을 말한다. 이러한 상황 인식 기법에 있어서는 상황 제어(context constraint)에 대한 연구가 진행되고 있다. 따라서 모바일 DRM을 위한 접근 제어 모델은 다양한 환경에 대한 상황 제어를 수행할 수 있어야 한다.

본 논문에서는 상황인식 기반으로 휴대폰 사용의 오용품

을 방지하고, 벨소리에 대한 사용을 제어하는 모델을 제안한다. 또한 제한된 모델을 벨소리 보도 환경에서 구축하여 테스트하고 본 논문의 구성은 다음과 같다.

2장에서는 현재 상황 인식 접근제어에 관한 연구에 대해 설명한다. 3장은 제안하는 상황인식 접근제어모델에 대한 설명한다. 4장은 프로그램 구현에 대한 설명이며, 5장은 결론 및 향후 연구 과제에 대해 설명하고 본 논문을 마무리한다.
2. 관련 연구

디지털 콘텐츠에 대한 권리를 보호하기 위해, 많은 방법들이 있었다. 초창기의 시도들은 Mandatory Access Control (MAC), Discretionary Access Control (DAC), Role-based Access Control (RBAC) 등이 전형적인 접근 제어 (traditional access control)이다. 이러한 전형적인 접근 제어는 서비스나 디지털 콘텐츠의 제공자가 어떤 사용자가 이러한 자원에 접근할 수 있고, 어떤 형태의 접근을 허용하는지를 결정할 수 있었다. 본 장에서는 현재 많은 분야에서 활용되고 있는 DRM, Context-aware, Access control 등에 대한 실태를 보고한다.

2.1 DRM

DRM (Digital Rights Management)은 디지털 콘텐츠의 지적 재산권에 대한 권리(rights) 보호를 위한 기술이다. 콘텐츠의 점유자로 부터 소비자에게 이르는 모든 유통 시점에서의 거래 및 분배 과정, 사용규칙이 적법하게 성립되도록 하는 기술이다. 그래서, 해당 콘텐츠의 불법 접근 및 사용을 불가능하게 하기 위한 수단을 제공한다. 특히, 모바일 DRM은 모바일 콘텐츠의 지적 자산에 대한 권리를 관리 및 보호하는 기술로, 일반 DRM에 비해 훨씬 다양한 환경에 콘텐츠가 저장되고 모바일 단말기의 특성 때문에 성능이 많이 중요해 여겨지는 분야이다[5].

모바일 DRM의 핵심 기술은 암호화, 커팅 방지 및 관리, 권한 제어 및 환경 토큰 등이 있다. 본 논문에서는 사용자의 접속 환경에 따라 암호화 및 인증 기술을 이용하여 접근 제어 기능을 활성화할 수 있는 모델을 제시한다.

2.2 상황인식(Context-aware)

모바일 DRM에서는 일반 DRM 보다도 더욱 다양한 환경에서 사용자들이 취용하고 디지털 자원들이 다양한 환경에 적합하고 사용된다. 그런데 이러한 사용자의 환경이 동적으로 변화할 수 있으므로, 이러한 다양한 환경에서 디지털 자원에 대한 안전한 사용 제어 (usage control)를 위해서는 상황 인식(context-aware)방법이 필요하다.

여기서 상황(context)는 사용자, 공간, 오브젝트 등의 개체와 관련된 모든 정보라고 정의할 수 있다. 상황 인식 기법이란 수집된 상황(context) 정보(IP 주소, GPS 위치 등)들을 통해서 사용자의 환경의 동적 변화를 파악하고 이러한 환경 변화를 통해 특성에 맞는 서비스의 접근 권한, 사용 권한 등을 제어하는 방법을 말한다. 이러한 상황 인식 기법을 통해 변동하는 환경들을 상황 제어(context control)이라 한다. 따라서 모바일 DRM을 위한 접근 제어 모델은 다양한 환경을 이용하는 상황 제어를 수행할 수 있어야 한다.

2.3 접근 제어 (Access Control)

접근 제어는 디지털 콘텐츠에 권한이 부여된 사용자에게 허용하는 것, 권한이 없는 접근을 허용하지 않는 것을 의미한다. 접근 제어 방법에는 콘텐츠의 소유자 또는 관리자가 보안 관리자의 계급이 아닌 자율적 판단에 따라 접근 권한을 다른 사용자에게 부여하는 일반적 접근 제어 (Mandatory Access Control), 개별적으로 파일 격리에 비밀등급을 결합시키고, 사용자에게는 허가등급을 부여하는 강제적 접근 제어 (Discretionary Access Control), 역할기반 접근 제어 (Role-Based Access Control) 그리고 본 논문에 적용된 Dynamic RBAC 모델이 있다[6][7][8].

역할 기반 접근 제어 방법은 긴밀한 접근 제어를 포함하고 강제적 접근 제어 모델을 기반으로 하여 접근 제어 모델을 저지하는 구조에 추가적으로 사용자와 자원의 관계에 역할을 할 Role이라는 새로운 개념을 포함시킨 접근 제어 모델이다. 기존 접근 제어 모델의 경우 사용자와 객체간의 관계를 직접적으로 설정해야 하므로 사용자와 객체가 많아질 경우 관계를 설정하고 관리하기는 비효율적이다. 그러나 역할기반 접근 제어를 로직을 설정하여 역할을 동등으로 접근 제어를 효율적으로 관리할 수 있다.

DRBA 모델은 그림 1과 같이 RBA 모델을 기초로 하고 있지만, 전체적인 역할(Role)을 관리하는 장치가 있는 상황(Context) 정보가 들어올 경우 적절한 허가를 할당한다.

![그림 1] Dynamic RBAC Model

3. 제안 모델

본 장에서는 제안한 상황인식 접근 제어 모델에 대해서 다룬다.

3.1 위치 정보 인식

GPS를 통해 현재 모바일 단말기 사용자의 위치 정보를 알 수 있다. 이 위치정보는 현재의 위치, 날씨, 해발 등이 나타난다. 단말기는 위치 정보를 기기 설정을 통해 사용자와 서비스의 접근 권한, 사용권한 등을 제어하는 방법을 말한다. 이러한 위치 인식 기법을 통해 변동하는 환경들을 상황 제어(context control)로 한다. 따라서 모바일 DRM을 위한 접근 제어 모델은 다양한 환경을 이용하는 상황 제어를 수행할 수 있어야 한다.
모바일 단말기는 시간정보를 기지국을 통해서 받아내는데, 단말기는 시간에 따라서 시야 시간 또는 주 업무 시간에는 모드를 변경 또는 종료로 변경하고 화면의 방각기를 어둡게 하여 전원 공급을 절전적으로 변경하여 배터리 소비를 줄일 수 있다.

4. 시스템 개요 및 구현
4.1 시스템 개요

[그림 3] 시스템의 흐름

위의 [그림 3]은 단말기의 위치정보가 변경되었을 때 모바일 변경되는 과정을 보여준다. 아래는 이 과정에 대한 설명이다.

1. GPS를 이용해 위성으로부터 주기적으로 위치정보 제공 받는다.
2. 현재 연결된 기지국을 통해 서버에 있는 Context Agent로 단말기 위치정보를 보낸다.
3. Context Agent는 데이터베이스에서 위치 정보에 대한 자료를 읽어서 위치를 결정한다.
4. 권한을 단말기로 전송한다.
5. 부여 받은 권한에 따라 모바일 접근을 제어해먹다.

4.2 시스템 구현

본 논문에서 제안 된 모델을 구현 하기 위해서는 하드웨어 단말기, PDA 등을 이용해야 하지만 이러한 단말기를 직접 제어하기는 것이 현실적으로 쉽지 않기 때문에 합법적에서 나온 임베디드 보드인 EMPOS-II를 이용해서 구현 하였다.

서버 시스템은 Intel Pentium3 800MHz CPU와 256MB RAM의 Redhat Linux 9.0 버전으로 구축되어 있다.

[그림 4] RoleAgent 함수

위의 [그림 4]는 위치에 대한 상황정보가 단말기에서 변환

\[
\text{[그림 5] 데이터 구조}
\]

\[

currentRole = \text{RoleAgent}((\text{latitude, longitude, altitude})
\]

\[
\text{if (currentRole == 'R2')}
\]

\[
\text{if (currentModePermission() != 'P2')} \text{val = 0;}
\]

\[
\text{else if (currentRole == 'R1')}
\]

\[
\text{if (currentModePermission() == 'P0')} \text{val2 = (--(val < 7)) & 0x60;}
\]

\[
\text{val = (val >> 1)} \text{val2;}
\]

\[
\text{else}
\]

\[
\text{val2 = (--(val > 7)) & 0x1;}
\]

\[
\text{val = (val < 1)} \text{val2;}
\]

\[
\text{[그림 6] Permission 확인 후 모드 변경}
\]

[그림 6]은 RoleAgent에서 Role을 받고 현재 모드의 Permission을 비교 후 모드를 변경하는 소스코드를 보여 준다. 본 실험에서는 단일모드 모드를 제어할 수 없기 때문 에 EMPOS-II 모듈의 8개의 led를 제어하는 것으로 한 니다. 현재 Role이 R2일 때는 전원을 억제적으로 차단 해야 한다. 워 프로그램에서는 모든 led가 꺼지는 위치가 된다. 만약 Role이 R1이면 현재의 모드 확인 후 범위 내 모드 일 경우 led가 오른쪽으로 흐르며 정동되게 나타난다. 그리 고 R0인 경우 모든 모드의 접근이 가능하며, led는 왼쪽 으로 흐르며 정동되게 구현하였다.

5. 결론 및 향후 연구

본 논문에서는 모바일 단말기의 웹터미니아 콘텐츠를 위한 상황인식 접근제어 모델을 제안하였다. 이 모델은 모바일 단말기의 범위 모드를 현재의 위치에 따라서 억제적으로 적절하게 변경되도록 하여 공연장, 시영상 등의 장소에서 휴대폰의 무분별한 사용을 제한하는 방법이다.