Power Model Development for Sensor Network Nodes

Jaebok Park*, Hyunwoo Joe*, Dukkyun Wu**, Chaedeok Lim**, Hyungshin Kim*
Dept. of Computer Engineering, Chungnam National University
*Electronics and Telecommunications Research Institute

1. 서론

센서네트워크는 근거리 무선통신 장치를 이용하고 배터리로 동작하며, 매드족(Aod-Hoc) 방식의 네트워크를 이용한다. 이들 센서네트워크는 보다 다양한 사회 분야에서 유용하게 사용하기 위해서는 소모전력을 최소화해야 한다. 일반적으로 센서네트워크는 수백여에서 수천만 개의 노드들을 이용하며, 설치 이후에는 배터리를 쉽게 교체할 수 없으므로 한 개의 배터리를 최소 몇 년 이상 동작할 수 있어야 한다. 즉 배터리 소모전력이 그 센서네트워크의 수명을 좌우한다고 할 수 있다. 따라서 센서네트워크의 수명을 극대화하기 위해서는 시스템의 전력소비량을 정확히 예측하는 것이 필요하다.

본 연구에서는 센서네트워크의 정확한 소비전력추정을 위해 영향이기바와 동작상태기반의 측정방법을 이용하여 전력모델을 개발한다. 본 논문에서는 전력모델을 개발할 수 있는 측정환경과 방법에 대해 소개하고 이 측정환경과 방법을 이용하여 전력모델링 과정을 소개한다.

2. 전력모델링 개발환경

우리의 전력모델링 개발환경은 그림 1(a)과 같이 호스트, PC, 전원공급기, 센서노드로 구성되어 있다. 그림 1(b)에 있는 전력측정소프트웨어는 호스트PC에서 시리얼포트를 이용하여 전원공급기를 제어하고 측정데이터를 전송 받는다. 전원공급기는 Powerline을 이용하여 센서노드의 소모전력을 측정한다. 이 경우 전원부의 동작전류를 채용하기 위해서 센서노드의 본래적인 동작모드를 작정한다. 전력모델링에서 사용된 전원공급기는 HP사의 66311B로 최대 촉발량 깊은 15.6us로 매우 빠르고 정밀하게 촉발량을 할 수 있다. 우리의 전력모델링 개발환경은 크게 2가지의 촉발량방식을 가지고 있다. 첫 번째 방식은 촉발량 간격과 촉발량 수를 고정하는 방식으로, 한 번에 최소 15.6us 간격으로 최대 4096개의 데이터를 얻을 수 있다. 두 번째 방식은 전원공급기에서 평균전류값을 계산하여 배터리 전압을 유도하는 방식이다. 우리는 마이크로프로세서와 센서와 센서들의 특성을 따라 적합한 전력측정방식을 선택하여 전력모델을 만들었다.

본 연구에서 사용된 센서노드는 Nano-24[5]이며 어반 마이크로프로세서인 Atmeg128L와 2.4Ghz RF통신인 CC2420로 구성된 노드이다. 이 노드는 센서보드 및 영리에 저반도와 동작하며, 노드의 동작전압은 3.3V로 레귤레이터를 사용하지 않고 건전지 전압을 직
3. 마이크로컨트롤러 전력모델링

 먼저 우리는 마이크로컨트롤러의 전력모델을 기존 에너지 소모와 인터-인스트럭션 효율을 고려하여 개발한 3.1 번째로 기본 에너지 소모를 각 명령어에 고정된 에너지 소모 값을 말한다. 우리는 ATmega128L이 가진 133개의 명령어의 소모전력을 측정하여 전력모델을 개발했다. 한 명령어의 소모전력을 구하는 방법은 그림 2와 같이 동일한 명령어를 반복적으로 수행하여 측정한다.

![그림 2] 기본 에너지 소모 측정 방법

두 번째로 인터-인스트럭션 효율과 기본 에너지 소모와 달리 다수의 다른 명령어들로 이루어진 프로그램을 실행 시켰을 때 기본 소모전류에 더 소모되는 것을 말한다. 이는 프로그램 실행 중 이 전 명령어와 현재 명령어가 다를 때 발생한다.

 인터-인스트럭션 효율은 보통은 MCU에서 동일 내부 모듈을 사용하여 기본 에너지소모값이 비슷한 명령어들 을 클래스로 묶어 각 클래스간 변화 값을 측정하여 보정 하는 방법이 있다. 명령어의 전력모델을 위해 기본 에너지 소모 측정 시, 명령어들의 오퍼멘트를 모두 1인 경우 와 0인 경우를 반복적으로 실행하여 최대 소모전류를 구한다. 반대로 항상 0인 경우를 반복하여 최소 소모전류를 구한다. 모든 명령어마다 최대값과 최소값을 구하고 이 들값의 평균값을 전력모델에 사용한다. 추가적으로 각 클래스 별로 명령어들을 분류하여 모든 클래스로 동작 하는 경우와 모든 같은 클래스로 동작하는 경우를 조합하여 평균전류를 구하고, 전력소모 계산시 이 평균전류를 각 클래스 단위로 보정하여 사용한다. 이러한 방법들을 이용하면 시뮬레이션 중에 명령어를 분석하지 않고 동일한 인터-인스트럭션 효율을 계산하여 시뮬레이터에 부하를 주지 않는다. 따라서 우리는 이러한 방법들을 이용하여 인터-인스트럭션 효율의 문제를 해결한 전력모델을 개발했다.

4. 통신모듈 전력모델링

통신모듈의 CC2420은 2.4GHz의 지그바이트를 이용하는 RF칩이다. 이 칩의 기본적인 동작은 RX, TX, idle, power down mode들을 가지고 있다. 송신모드는 8개의 통신레벨을 가지고 있으며, 각 통신레벨의 소모는 소모전류가 다르다. 통신모듈의 소모전력을 측정하기 위해서 두 개의 센서노드를 이용하며, 한 개의 노드는 송신을, 다른 한 개의 노드는 수신을 사용하여 소모전력을 측정한다.

그림 3의 (a)는 송신기의 소모전류를 분석한 그래프로써 0.2초 동안 측정한 결과로 0.1초 간격의 통신주기를 가진 것이다. 통신영역은 률 확대해 보면 그림 3의 (b)와 같으며, 레이블은 데이터전송을 위해 통신량을 확인할 수 있도록 수신모드를 갖는다. 레이블은 실험적인 센서데이터를 전송하는 영역이고, 레이블은 acknowledgement를 위해 수신모드를 갖는다. 마지막으로 레이블은 통신모듈 변경 및 CC2420의 메모리 쓰기 및 자료기의 부분이다. 이 그래프를 이용하여 TX영역과 RX영역의 평균소모전류를 구하고 마이크로프로세서의 소모전류를 배언 통신에 의해 소모되는 전류를 얻을 수 있다.

![그림 3] (a)송신기 소모전류, (b)상세 송신기 소모전류

CC2420의 송신모드는 8개의 출력세기를 제공하여 출력세기 변경방법은 CC2420의 TXCTRL 레지스터를 이용하여 배아릴 수 있다. 우리는 이 레지스터를 변경하여 출력세기에 따른 소모전류를 측정하고 CC2420의 송신세기에 따른 전력모델을 개발했다.

추가적으로 CC2420는 전력에 의해 DOWN, IDLE모드를 제공한다. 이 모드들은 측정하기 위해 우리는 먼저 프로그램으로 CC2420을 OFF시킨 후 소모전류를 측정한 후 전력 값은 10.473m와, 이 전력값은 마이크로컨트롤러의 명령어에 의해 소모되는 전력값과 기타부품들에 의해 소모되는 전력값이다. 이 전력값은 마이크로컨트롤러의 명령어 전력모델에 의해 계산된다. 다음과 CC2420의 POWER DOWN모드로 ON시켜 측정한 결과 10.491m가 소모했다. 따라서 POWER DOWN모드는 OFF상태보다 10.491mA - 10.473mA = 0.018mA가 추가되어야 한다. 추가적으로 IDLE모드는 OFF상태보다 10.932mA - 10.473mA = 0.499mA가 더 소모되었다. 우리는 이를 분석작업을 통해 통신 모듈의 전력모델을 개발했다.
5. 주변센서 전력모델링

Nano-24의 센서보드는 센서노드와 결합하여 외부 환경을 감지한다. 이 센서보드는 조도, 온도, 습도, 가스 센서를 가지고 있다. 각 센서는 마이크로컨트롤러의 ADC Port와 연결되어 센서들을 감지한다. 우리는 이들 각 센서에 대해서 전력모델을 개발한다.

여러 센서들 중 조도센서(A9606)의 전력모델링을 살펴 보면, 조도센서는 조도값을 읽기 위하여 둔방법으로는 A/D 컨버터 프로그래밍기법을 이용하여 조도값에 따라 소모 되는 전류가 달라진다.

우리는 조도센서의 소모전력을 측정하기 위해 센서 보드를 정착한 후 조도센서를 OFF시킨 상태와 ON시킨 후 조도값(0lux) 상태의 전력값을 구하였다. 분석결과 그 차는 30.12μA이며, 이 값은 조도센서를 OFF 시킬 경우 소모되는 전류이다.

![그림 4 조도센서 분석그래프](그림4 조도센서 분석그래프)

그림 4는 조도값에 따라 소모되는 전류를 한 그래프에 나타낸 것이다. 이 그래프를 분석해 보면 조도값에 따라 전력값이 일정하게 증가하는 것을 볼 수 있다. 우리는 이 값을 분석하여 조도값에 따라 소모전력을 구할 수 있는 전력모델을 만들었다.

\[0.03012\text{mA}(\text{센서ON}) + (\text{조도값} \times 0.001847648)\text{mA} \] (1)

(1)식에서 0.001847648는 조도값 1(lux)당 소모되는 전력이다. 일반적으로 센서데이터는 조도값을 측정할 수 없으므로, 조도값을 전력모델에 대입하여 소모전력을 예측하게 된다.

6. 액츄에이터 전력모델링

Nano-24의 액츄에이터는 AC Relay와 DC Relay로 구성되어 있다. 우리는 각 Relay의 소모전력을 측정하기 위해 0.05초 간격으로 ON, OFF를 반복시켜 그림5와 같은 소모전류 그래프를 얻었다.

![그림 5 (a) DC Relay, (b) AC Relay 소모전류 분석 그래프](그림5 (a) DC Relay, (b) AC Relay 소모전류 분석 그래프)

Relay동작은 크게 OFF->ON상태, ON상태, ON->OFF 상태로 나누어볼 수 있다. ON상태의 소모전력은 ON과 OFF 상태를 비교하여 쉽게 구할 수 있다. 하지만 OFF상태의 소모전력만 가지고 relay의 소모전력을 정확히 추정하기에는 부족하다. 왜냐하면 OFF->ON상태와 ON->OFF상태가 서로 반전되지 않기 때문이다. 그림6(a)의 그래프를 분석해 보면 OFF->ON상태전력은 0.004767149와 같이 개발하였다. 이 (8)식과 (9)식을 이용하면 DC Relay의 소모전력을 보다 정밀하게 주정할 수 있다. 마찬가지로 AC Relay의 OFF->ON과 ON상태 전력모델은 (8)와 같이 개발하였다. AC Relay의 DC Relay와 다르게 ON->OFF상태 전력국간이 필요하지 않다.

\[(27.519mA+0.0004767149)+(38.3234mA+0.00004767149)\quad (8)\]
\[(9.467mA+0.0002207149)\quad (9)\]
\[(104.65mA+0.01287149)+(142.375983mA+0.01287149)\quad (10)\]

7. 결론

우리는 센서노드의 소모전력을 정확히 측정할 수 있는 환경과 방법을 소개했다. 이 환경과 방법을 이용하여 마이크로컨트롤러인 ATmega128L을 맡겨서 단위로 소모전력을 분석하고, 인터-인스트럭션효과를 고려하여 전력모델을 개발하였다.

통신모듈의 전력모델을 위하여 2개 노드를 사용하여 간단한 네트워크를 구성하고 오류신호 소모되는 전력을 분석하였다. 오류신호에 따르의 소보는 전력을 측정하여 통신 모듈의 전력모델을 만들었다. 각 센서 및 액츄에이터들로 동작시킬 수 있는 프로그램들을 작성하여 원하는 동작에 가장 적절한 측정하고 분석하여 전력모델을 개발하였다. 향후 연구는 전력측정 시뮬레이터를 위해 빠르고 정확하게 전력모델을 생성할 수 있는 도구를 개발하는 것이다.