선서네트워크를 위한 ZigBee 네트워크 프로토콜§
조원근** 유대훈* 최동철* 이승현** 정광수**
광운대학교 컴퓨터과학과** 광운대학교 전자정보공학부**
{falltrap, yo2dh}@cs.kw.ac.kr wchoi@daisy.kw.ac.kr {rhee, kchung}@kw.ac.kr

A ZigBee Network Protocol for Sensor Networks.
WongSeon Jo** Daehun Yoo* WoongChul Choi* Seung Hyong Rhee** KwangSue Chung**
Department of Computer Science, KwangWoo University**
Department of Electronics Engineering, KwangWoo University**

요 약
본 논문에서는 ZigBee Alliance에서 제안하고 있는 IEEE 802.15.4를 기반으로 하는 USN을 위한 라우팅 프로토콜을 연구하고 있다. 현재 ZigBee Specification v1.0의 표준에서는 AODV라우팅 프로토콜과 Hierarchical 라우팅 프로토콜을 사용하고 있다. 하지만 ZigBee Specification v1.0의 표준에서 사용하고 있는 이 두 가지 라우팅 프로토콜은 대규모의 센서네트워크에 적용하기에 많은 단점을 존재한다. 이러한 단점을 해결하기 위해 다음과 같은 논문에서는, 센서네트워크가 가지고 있는 여러 가지 특성을 고려한 Adhoc 네트워크에서 사용하는 라우팅 프로토콜을 제안한다. 따라서 본 논문에서는 이러한 단점을 해결할 수 있는 클러스터 기반의 라우팅 프로토콜을 제안한다.

1. 서론
선서네트워크는 정보통신부의 IT639전력망의 하나로 그 중요성이 날로 증가하고 있다. 센서네트워크는 필요로 하는 모든 곳에 수많은 센서를 부착하여 지속적으로 수집, 관리 및 제어하는 시스템이다. 즉 물리 공간에 배치된 센서를 통해 온실, 건물, 환경 등에 대한 환경 정보를 보낼 수 있는 '라우팅 네트워크'이다. 이러한 센서 네트워크는 물리적 세계와 디지털 세계를 연결할 수 있는 흥미로운 문제에 대한 새로운 분야로 인식하게 되었다. 이 센서 네트워크는 현재로서도 많은 연구가 진행되고 있다. 이러한 센서 네트워크는 현재로서도 많은 연구가 진행되고 있으며, 우리 것에서도 늘어나고 있으며, 따라서 이를 위해 정보 전달을 위해 60,000개의 노드를 사용한 센서 네트워크를 구축할 예정이다. 이러한 센서 네트워크는 많은 노드를 사용하여 정보를 전달할 수 있는 장점이 많다. 물론 단점도 많아질 수 있지만, 이는 센서 네트워크에서 사용할 수 있는 PHY계층과 MAC계층을 기반으로 ZigBee Specification v1.0을 적용하여 만들어졌다. [2]

2. 관련 연구
2.1 ZigBee 네트워크
ZigBee 네트워크는 데이터 프레임을 전송하거나 수신하는 등 다양한 상호작용을 위한 인터페이스를 정의하고 있다. 또한 프로토콜, 링크, 전송, 위치 정보, 네트워크 관리 및 주소 할당 등도 디바이스 관리 기능을 수행한다. IEEE 802.15.4 표준에서는 사용하는 장치는 FFD(Full Function Device)와 RFD(Reduced Function Device)로 분류되며 본 ZigBee 네트워크에서는 이를 가능성을 충족하여 세분화 하여 저신호, 멀티, 단말, 할당 및 다른 종류의 장치로 구분하고 있다. 따라서, ZigBee 네트워크는 FFD만이 될 수 있으며, 하나의 ZigBee 네트워크 내에는 하나의 ZigBee 코디네이터로 반드시 필요하다. 코디네이터는 네트워크의 모든 장치를 관리하는 데 역할을 수행한다. 또한, 단말장치는 FDD와 RFD로 구분된다. 단말장치는 하나의 코디네이터 혹은 리더와의 네트워크에 연결된 장치로 움직임이 제한적이다. 또한 단말장치는 하나의 코디네이터 혹은 리더와의 네트워크에 연결된 장치로 움직임이 제한적이다. 이는 ZigBee 네트워크에 대한 단점으로 볼 수 있다. 단말장치는 하나의 코디네이터 혹은 리더와의 네트워크에 연결된 장치로 움직임이 제한적이다. 이는 ZigBee 네트워크에 대한 단점으로 볼 수 있다.

§ 본 연구는 한국과학재단 특성기초연구[R01 - 2005 - 000 - 10934 - 0 (2006)]의 지원에 의해 수행되었다.

2.2 ZigBee AODV 라우팅
ZigBee AODV 라우팅은 데이터 프레임을 전송하거나 수신하는 등 다양한 상호작용을 위한 인터페이스를 정의하고 있다. 또한 프로토콜, 링크, 전송, 위치 정보, 네트워크 관리 및 주소 할당 등도 디바이스 관리 기능을 수행한다. IEEE 802.15.4 표준에서는 사용하는 장치는 FFD(Full Function Device)와 RFD(Reduced Function Device)로 분류되며 본 ZigBee 네트워크에서는 이를 가능성을 충족하여 세분화 하여 저신호, 멀티, 단말, 할당 및 다른 종류의 장치로 구분하고 있다. 따라서, ZigBee 네트워크는 FFD만이 될 수 있으며, 하나의 ZigBee 네트워크 내에는 하나의 ZigBee 코디네이터로 반드시 필요하다.
AODV 라우트 알고리즘은 On-demand 방식의 라우팅 프로토콜이며, 각 노드들이 스스로로부터 목적지까지 가정적한 다중 경로를 찾아가는 터치와 재연결(Distance vector) 라우팅 성격을 지니고 있다.

크리네트와 라우팅의 목적지와 주위 노드들의 관계를 저장하는 라우팅 테이블(Routing table)을 유지하고 관리한다. ZipGe의 네트워크라는 제도에서는 데이터 전송 시 이 라우팅 테이블을 기반으로 소스 노드로부터 목적지 노드까지 경로를 구하는 것이 가능하다. 만약 데이터의 목적지 노드 주변에 대한 정보가 라우팅 테이블에 없다면, 소스 노드는 주변 노드들로부터 목적지 노드 정보를 요청한다. 이 요청은 현재의 ZipGe 네트워크에 있는 노드들에게 목적지로 가는 노드의 흐름을 찾아낸다. 이 요청은 라우팅 노드의 해제를 불가능하게 한다. 이 도중에 이 요청이 끝나는 경우, 해당 노드 정보를 저장하는 라우팅 테이블로 변경한다.

예를 들어, ZipGe 네트워크의 모든 노드들은 해제된 노드 정보를 저장하는 라우팅 테이블을 유지한다. 이 라우팅 테이블은 주변 노드들로부터 정보를 받아들이는 데 사용될 라우팅 테이블이며, 라우팅 테이블의 해제를 통한 ZipGe의 해제를 진행한다. 그 라우팅 테이블의 해제를 통해 ZipGe의 정보를 해제할 수 있다.

3.2 ZipGe 계층 구조(Hierarchical) 라우팅

계층 구조(Hierarchical) 라우팅은 라우팅 알고리즘과 경로 탐색 테이블의 사용을 비롯한 데이터 테이블의 정보를 저장하고 경로를 최적화하기 위해 ZipGe 서버의 트래픽 오버헤드를 줄일 수 있는 라우팅 프로토콜이다.

계층 구조의 라우팅은 ZipGe의 비록 네트워크의 모든 주변 노드들은 해제된 상황에 대해 다양한 요청을 받는다. 라우팅 테이블은 해제된 상황에 대해 라우팅 알림을 통해 해제된 노드 정보를 전달한다.

그림 1로 제작된 결과 적정 체계의 라우팅 네트워크

3.2 문제점 및 해결방안

3.1 문제점

2.2에서 살펴본 ZipGe AODV 라우팅은 많은 센서 노드들이 라우팅 테이블, 경로 탐색 테이블 그리고 많은 경로 요청 프로토콜에 포함되어야 할 수 있는 클러스터링을 사용하여 이 문제를 해결한다. 또한 라우팅 탐색을 유지하기 위해 많은 노드 정보를 수집하는 것이 필요하다. 이는 또한 클러스터링을 유지하되 큰 양의 메모리를 절약할 수 있는 클러스터링 프로토콜을 표준화하고 제작한다. 하지만 이러한 클라우팅 구조는 라우팅의 동작을 다르게 만들며, 이는 클러스터링 해제를 위해 라우팅 테이블을 사용하지 않는 라우팅 경로에 대한 복잡한 작업을 요구한다.

Cskip(d) = 1 + Cm * (Lm - d - 1), if = 1
Cskip(d) = 1 + Cm - Rm - Cm * Lm - d - 1, Otherwise

A_map = A_parent + Cskip(d) * n + [수식2]

- Cm: 시작지점의 가중치
- Lm: 시작지점의 최적화
- Rm: 시작지점의 가중치
- d: 시작지점의 가중치
- Cskip(d): 길이 d 노드가 가질 수 있는 주소의 부분 빈도

n: 여러 보수 노드들을 통해 네트워크 향상 노드에 속
- A_parent: 부모 노드의 주소
- A: 부모 노드의 주소

계층 구조 라우팅에서는 16 비트 주소가 넣어질 수 있는 주소의 본질적 문제를 해결하기 위해서 라우팅 테이블을 구성한다. A_map는 선택한 주소의 주소와 자신의 주소의 간격에 Cskip(d) 값을 더한 것과 같은 값이 된다. 이러한 값을 사용하여 자신의 주소를 자신의 주소의 간격에서 자동으로 갱신한다. 계층 노드에 데이터를 포트폴리오함으로서 라우팅이 이루어진다.

2.4 클러스터기반 센서네트워크 독립 프로토콜 [3]

대표적인 클러스터기반 센서네트워크를 구성하는 프로토콜은 LEACH에서 각 라우팅은 크게 클러스터가 구성되는 설정(setup) 단계와 여러 개의 TDMA 프로토콜로 구성된 지속 상태(steady-state) 단계로 이루어진다. 설정 단계의 시점에서 모든 노드들은 자신의 클러스터링된 클러스터 헤더가 될 수 있도록 해야 한다. 단계의 클러스터링된 클러스터 헤더가 되기 위한 과정은 다음과 같다. 라우팅을 통해 클러스터 헤더가 되기 위한 과정은 다음과 같다.

3.2 문제점 및 해결방안

3.1 문제점

2.2에서 살펴본 ZipGe AODV 라우팅은 많은 센서 노드들이 라우팅 테이블, 경로 탐색 테이블 그리고 많은 경로 요청 프로토콜에 포함되어야 할 수 있는 클러스터링을 사용하여 이 문제를 해결한다. 또한 라우팅 탐색을 유지하기 위해 많은 노드 정보를 수집하는 것이 필요하다. 이는 또한 클러스터링을 유지하되 큰 양의 메모리를 절약할 수 있는 클러스터링 프로토콜을 표준화하고 제작한다. 하지만 이러한 클라우팅 구조는 라우팅의 동작을 다르게 만들며, 이는 클러스터링 해제를 위해 라우팅 테이블을 사용하지 않는 라우팅 경로에 대한 복잡한 작업을 요구한다.

Cskip(d) = 1 + Cm * (Lm - d - 1), if = 1
Cskip(d) = 1 + Cm - Rm - Cm * Lm - d - 1, Otherwise

A_map = A_parent + Cskip(d) * n + [수식2]

- Cm: 시작지점의 가중치
- Lm: 시작지점의 최적화
- Rm: 시작지점의 가중치
- d: 시작지점의 가중치
- Cskip(d): 길이 d 노드가 가질 수 있는 주소의 부분 빈도

n: 여러 보수 노드들을 통해 네트워크 향상 노드에 속
- A_parent: 부모 노드의 주소
- A: 부모 노드의 주소

계층 구조 라우팅에서는 16 비트 주소가 넣어질 수 있는 주소의 본질적 문제를 해결하기 위해서 라우팅 테이블을 구성한다. A_map는 선택한 주소의 주소와 자신의 주소의 간격에 Cskip(d) 값을 더한 것과 같은 값이 된다. 이러한 값을 사용하여 자신의 주소를 자신의 주소의 간격에서 자동으로 갱신한다. 계측 단계에 데이터를 포트폴리오함으로서 라우팅이 이루어진다.
지 노드를 찾아가기 위해 비효율적으로 여러 노드를 거쳐가는 최
단 경로 문제가 발생하는 단점이 있다.

그림 2 개방적 라우팅의 복잡성 문제

또한 클러스터 기반 센서네트워크 라우팅 프로토콜의 LEACH의
문제와는 LEACH가 환 흐름 경로 제작된 논문이로 일부분에
서의 적용이 시도되지 않다는 전통적 차이가 있다.

센서 네트워크에서 일반적인 Adhoc 네트워크와는 다른 특성
때문에 일반적인 Adhoc 네트워크와는 다른 일반적 프로토콜을 필
요로 한다. 센서 네트워크는 Adhoc네트워크와 다른 특성을 다
다합쳐서, 클래식 동적적 반복을 가지면서 특정 노드간 라우
팅이 필요하지 않으므로, 유일한 적절한 가변은 한 라우팅 기
법을 적합하게 된다. 즉, 적절한 센서 노드들이 유사한 데이터
가져와, 각 센서 노드들이 데이터의 각 단위 정보를 가지고, 전송
전에 데이터를 모아서 전송하는 방식이 효과적이다. resets, 센서
노드들은 주로 방송(broadcast) 방식의 통신에 기반을 두지만, 내
부적으로 ad-hoc 네트워크는 점대점(point-to-point) 방식의 통신에
기반을 둔다. 이러한 특성 알고도 다른 여러 가지 특성을 가지고
있다.

3.2 해결 방안

센서네트워크에서의 라우팅 프로토콜은 데이터의 전송의 특
징 때문에 클러스터 기반의 라우팅 프로토콜이 보다 효율적으
다. 따라서 ZigBee Specification v1.0의 라우팅 프로토콜은
AODV와 계층적 라우팅 프로토콜 AODV에 센서네트워크를 위한
클러스터 기반의 라우팅 프로토콜을 제안하고자 한다.

클러스터 기반의 라우팅 프로토콜의 정합적 데이터를 모아서
전송하기 때문에 어려울수록 여러 데이터의 데이터의 크기를 줄
일 수 있다, 또한 AODV와 같은 복잡한 라우팅 라이브들의 필요
로 하지 않고, 계층적 라우팅에 비하여 적은 경로문제를 어느
정도 회피 할 수 있다.

802.15.4/ZigBee에서 클러스터기반의 라우팅 프로토콜을 이용하
기 위해서는 다음과 같은 구조를 지나야 한다. 첫째, 클러스터의
헤더는 주로 역할을 수행하므로 헤더가 2mAh 이상일 경우 라우팅 할
수 있는 주요가 존재해야 한다. 둘째, LEACH에서의 마찬가지로 클러
스터를 구성하는 설정조건과 데이터의 전송이 이루어지는
steady-state 구간으로 나뉘어져 하야 한다. 둘째, 센서를 기반으로
클러스터를 구성하기 위해 네트워크의 일부 노드들이 GSP를 가지
고 있어야 한다. 다섯째, 클러스터내의 노드들은 각각 1을
통해 통신 가능하게 한다.

위의 같은 구조를 지키면서 제한하는 라우팅 방법의 특징과
듯음과 네트워크의 시작들은 ZigBee 네트워크 마신기기로 네
디네트워크의 Beacon을 가지고 시작한다. Beacon을 구축을 통해
되는 노드들은 클러스터를 구성할 수 있다. 클러스터의 구성은
LEACH-C와 마찬가지로 위치를 기반으로 구성되며 구성된
클러스터 수준에 결합하게 된다. 클러스터에 속한 노
드의 주소는 클러스터의 주소 + 클러스터에서 유일한 주소로 할당
되게 된다. 클러스터간의 라우팅은 AODV방식과 같은
On-Demand 방식으로 이루어지게 되며 클러스터 내에서는
LEACH와 같은 방식으로 데이터의 전송이 이루어지게 된다.

그림 3 계산된 네트워크 구성

그림 3은 제안된 네트워크 구성은 보여주고 있다. 파란색으로
표시된 노드는 클러스터와 클러스터를 연결하는 주요 라우팅의 역
할을 수행하며 헤더에 데이터의 주로 보낸 라우팅 장치로 보낸。
라우팅 과정을 수행하는 반면, 클러스터간의 라우팅 AODV방식으로
클러스터간에 이어지는 라우팅과 클러스터의 해로 노드로
이어지며, 해당 클러스터로 보내진 데이터의 주로 가시적
으로 보여준다. 이렇게 하여서 복잡한 AODV의 라우팅
타입으로 간소화가 될 수 있으며 라우팅 과정에서 클러스터
의 주로 보낸 라우팅을 하기 때문에 전달 속도가 높게 된다.
이렇게 하여서 센서네트워크에서 제안되어진 AODV와 계층적
라우팅 보다 효율적인 네트워크를 구성 할 수 있다.

4. 결론 및 향후 과제

본 논문에서는 ZigBee Specification v1.0에서 표준으로 제정된
두 가지 라우팅 프로토콜 이외에 센서네트워크를 위한 클러스터
기반의 라우팅 프로토콜을 ZigBee 네트워크에서 사용하는 것을 제
안하였다. 하지만 여전히 라우팅 데모의 유지, 클러스터 구성의
모바일, 그리고 최적 경로 선택의 문제의 해법으로 보다 효
율적으로 수행할 수 있는 방안을 마련하기 위해 많은 연구가 진행
되어야 한다.

또한, 향후 시뮬레이션을 통해 센서네트워크에서는 ZigBee
Specification v1.0에서 제안된 AODV가 계층구조 라우팅 프로토
콜보다 클러스터 기반의 라우팅 프로토콜이 보다 효율성을 증명
하고, 연구의 결과를 토대로 ZigBee Specification의 다음 버전에
서는 센서네트워크를 위한 클러스터 기반의 라우팅 프로토콜의
표준을 제안 할 수 있도록 노력할 것이다.

5. 참고문헌

Protocol Architecture for Wireless Microsensor Networks," IEEE
Trans. on Wireless Communications, Vol.1, No.4, Oct. 2002,
[4] 배정중, 김성희, "유션 센서 네트워크의 라우팅 프로토콜,
IITA IT정책, 2004년 4월.
[5] 한국전산자, RFID 및 USN 에 IPv6 적용방안 및 활용 방안에
관한 연구, 보고서, 2005.11