울랑센서를 적용한 오일증기검출기 거동 해석

이길승(부산대 대학원 지능기계공학과, 김태옥(금오기전주), 김화영(부산대 기계공학부, 안중완(부산대 기계공학부)

Analysis of Oil-Mist-Detector applied Capacitance Sensor

ABSTRACT

This paper analysed Oil-Mist-Detector applied Capacitance Sensor which protects Diesel engine & human from explosion by detecting density of oil mist distribution. Assuming that distance between oil mists is same, Capacitance sensor plates & all oil mists could be analogized to capacitors. From equivalent circuit of Oil-Mist-Detector, variation of Capacitance which is related to Oil Mist's diameter & density of oil mist distribution is obtainable.

Key Words : Oil-Mist-Detector (오일증기검출기), Capacitance Sensor (용량센서), Permittivity (유전율), Density of oil mist distribution(오일증기분포밀도)

1. 서론

데항 디젤엔진의 경우 저속 고부하 구동으로 인한
기구부(크랭크축, 베이징 등)의 손상이 초래되기 쉽고 그로 인해 발생되는 마찰열로 음압오일이 증발하여 크랭크케이스 내에서 오일증기로 부유하는데 그 밀도가 증가하면 과온된 기구부에서 발생되는 불꽃(spark) 및 연진부의 열에 의해 발화를 하게 되고 결국 연진의 폭발을 초래하여 연진의 파손은 물론 인명피해까지 초래된다.

오일증기검출기(Oil Mist Detector)는 디젤엔진 내 오일 증기의 분포밀도(Density of Oil Mist Distribution)를 측정하여 기구부의 결함으로 인한 폭발을 사전에 차단함으로써 제품 및 인명을 보호하는 장치이다.

따라서 오일 증기 검출기의 신뢰성을 확보하기 위하여 광기증의 밀도 및 밀도 측정기의 확보가 필수적이다.

본 논문은 광산업에 적용한 기존 오일증기검출기의 단점을 개선하고자 새롭게 제안된 용량형 센서를 적용한 오일증기 검출기의 거동을 해석하였다.

2. 거동해석

2.1 오일증기(Oil Mist) 입자의 분포

오일증기의 입자는 단위체적간 모든 위치에서 존재할 확률이 동일하다 가정할 수 있다. 즉, Fig. 1처럼 입자간의 간격은 동일하여 그 배열은 정사면체 구조의 각 축체절에 입자가 분포하는 형태를 띈다.

![Fig. 1 Distribution of Oil Mist in the air](image-url)
2.2 오일중기(Oil Mist) 입자 용량

공기중에 부유하는 오일중기 입자의 모양은 구의 형태에 가깝다 할 수 있지만 모양은 모양의 콘텐서로 용이하게 상상하기 위해 모양이 정육면체라 가정하면 정육면체의 한면의 길이는

\[D_{oil} = \frac{R_{oil}(4\pi/3)^{1/3}}{1} \]

이 된다.

이 때 오일중기 입자 하나의 용량은 다음과 같다.

\[C_{oil} = \frac{\varepsilon_{oil} \cdot D_{oil}}{2} \]

2.3 극판간의 용량

상하 오일입자 사이에 존재하는 공기의 양에 의한 용량은 다음과 같다.

\[C_{air} = \frac{\varepsilon_{air} \cdot D_{air}}{(D_{2} - D_{1})} \]

오일 입자에 관계하지 않는 극판사이의 공기에 의한 용량은 다음과 같다.

\[C_{air} = \frac{\varepsilon_{air} \cdot W \cdot L}{(N_x \cdot N_y \cdot D_{air})/H} \]

2.4 등가화로

용량센서의 상하(z-direction)에 위치하는 오일중기 및 극판 사이의 용량은 직렬연결, 평행방향(x,y-direction)에 위치하는 오일중기 및 극판간의 용량은 병렬연결된 콘텐서로 상한 등가화로 구하면 용량센서를 이용한 오일중기 검출기를 Fig. 2와 같이 간단화 할 수 있다.

2.5 용량변화

오일중기 입자크기 및 분포밀도에 따른 용량센서의 용량은 다음과 같다.

\[C_{net} = \frac{1}{2} N_x \cdot N_y \left[\frac{N_x}{C_{air}} - \frac{N_x - 1}{C_{oil}} \right] + \frac{N_x}{C_{air}} + \frac{N_y}{C_{oil}} + C_{air} \]

\[\Delta C_{net} = N_x \cdot N_y \left[\frac{N_x}{C_{air}} - \frac{N_x - 1}{C_{oil}} \right] + C_{air} - \frac{W \cdot L}{H} \]

3 결론

본 논문에서는 용량형 센서를 적용한 오일중기검출기에의 구조 해석을 위한 초기단계로 수학이 없어 오일입자의 거리가 일정한 경우 극판과 가오일입자의 무양을 콘텐서로 상한 등가화로 구성하여 오일중기 분포밀도에 따른 용량 변화를 예측하였다.

실제 엔진크랭크 캐이에서 흡입한 오일중기를 포함하는 공기는 머트 구조를 갖는 용량센서 극판사이를 통과하는 과정에서 정상에 따른 유동의 비선형성으로 입차간의 간격 및 높이에 따른 유속도 다양하게 된다.

이들간의 용량변화에의 영향은 현재 연구 중이며 향후 논문에서 기술하도록 하겠다.

추가

본 연구는 산업자원부 자체산업기술개발사업의 지원에 의해 부산대학교와 금오기전(주)의 산학과제로 이루어진 것임.

참고문헌