MBE Growth and Unique Properties of MnGeP₂ and FeMn Thin Films

조성래
울산대학교 물리학과

A new magnetic semiconductor, MnGeP₂, whose crystal structure is chalcopyrites and "genealogically" related to the more familiar tetrahedrally-coordinated zinc-blende, was grown on GaAs(100) substrate using MBE (molecular beam epitaxy). In this talk I will present the magnetic and electrical properties of MnGeP₂ thin film. It exhibited ferromagnetism with $T_C = 320$ K and a magnetic moment per Mn at 5K of 2.58 μ_B. On the other hand, it has been well known that fcc γ -Fe₁₋ₓMnx (0.1<x<0.6) alloys has antiferromagnetic ordering at $T_N=540$ K, which is widely used as pinning layer in various spin devices. Here we report a new crystal phase, i.e. α-Mn phase, of epitaxial Fe₀.₅Mn₀.₅ thin film grown on GaAs(100) substrate. Interestingly, it shows ferrimagnetic ordering at 750 K. The magnetic moment per Fe atom is > 3 μ_B and the coercivity field is 363 Oe at 5 K.