A study on the magnetic properties of Mn-doped ZnO films with oxygen vacancy

*Dept. of Physics, Hanyang Univ., Seoul, Korea
**Dept. of Physics, Ewha Woman Univ., Seoul, Korea
***Dept. of Physics, Kookmin Univ., Seoul, Korea

The ferromagnetic Mn-doped ZnO film, grown by an elaborate deposition technique, is needed because their ferromagnetic ordering is significantly sensitive to the charge carriers in a spin-split impurity band formed by the extended donor states, which is induced by native defects such as oxygen vacancy. All of Zn$_{0.95}$Mn$_{0.05}$O$_{1.5}$ films with a thickness of 100 nm were prepared by magnetron co-sputtering in reactive oxygen. High-purity oxygen gas (99.999%) was introduced into the vacuum chamber for a P_{O_2} range of 1.2×10^5 to 2.2×10^7 Torr during growth, were monitored with a residual gas analyzer. The crystalline structures and the compositions were determined by XRD and Rutherford backscattering spectroscopy (RBS), respectively. The magnetic properties were measured with a superconducting quantum interference device magnetometer. All the films were found to be highly oriented along the c-axis of hexagonal structure, and no peak from other phases has been seen. The resistivity is decreased with increasing the oxygen vacancy which is determined by RBS in the oxygen-resonance mode. These results indicate that the increment of conductivity, which might be due to the formation of donor level, could be controlled by P_{O_2}. The M-H curves show that the film, prepared at a P_{O_2} of 2.2×10^7 Torr, exhibits a large magnetic moment of $3.27\mu_B$ at room temperature and a T_C above 350 K, while the films at an partial pressure of higher than 1.2×10^6 Torr reveal the nonmagnetic behaviors. These magnetic results suggest that the important role of oxygen vacancy is confirmed evidently for the ferromagnetic ordering in Mn-doped ZnO film, and open up another possibility for the realization of spintronic devices.