WIPI 기반 모바일 공학용 계산기

김현철, 김보라, 공기석, 서대영
한국산업기술대학교 컴퓨터공학과
(kimhnchul, debbora, kskong, seody)@kpu.ac.kr

WIPI-Based Mobile Scientific Calculator
Hyun-Chul Kim, Bo-Ra Kim, Ki-Sok Kong, Dae-Young Seo
Dept. of Computer Engineering, Korea Polytechnic University

요 약
일반 공학용 계산기를 모델로 WIPI를 이용한 어플리케이션인 모바일 공학용 계산기를 개발하였다. 모바일 공학용 계산기는 사용빈도가 높은 함수연산(삼각함수, log, √, 근사), 괄호, 제곱근 등)을 지원하며 식의 저장(Save), 불러오기(Load) 기능으로 이용의 편리함을 향상시켰다. 입력받은 문자열을 흐트로 변환하여 처리하여 계산한 후 결과를 레이아웃에 따라 구조화된 결과를 보여 줄 수 있도록 출력이 가능하다. 성능은 PC나 일반 공학용 계산기의 처리속도와 결과의 정확도 면에서 뛰어난 수준이다. 모바일 공학용 계산기는 활용사례에 따라 다양한 기능을 편리하고 사용하기 좋은 장점이 있다. 또한 손서에 따라 업그레이드로 프로그램의 확장이 가능하다.

1. 서 론
‘손안의 PC시대’에 휴대폰을 향한 고객의 나즈는 시대에 발맞춰 진화하고 있으며 그 결과 요즘의 기기들은 전화뿐만 아니라 컴퓨터를 대신하기도 하며 TV, 라디오, 게임기, mp3플레이어를 대신하기도 한다. 이는 휴대폰의 SW/SW의 활용성을 촉진하고 있다는 것을 뒷받침 한다.

국내 모바일 플랫폼인 WIPI[1]가 발표된 이후부터 현재까지 거의 대부분의 대우형 휴대폰을 대상으로 WIPI가 탑재되었다. 따라서 현재는 국내에서 제공되는 모바일 컨텐츠의 대부분이 WIPI를 이용하여 개발된 컨텐츠인데, 현재 국내 이동통신 3사에서 제공하는 컨텐츠의 대부분이 게임영역의 컨텐츠이다. WIPI 플랫폼을 이용한 컨텐츠들은 현재는 물론 다른 시각의 컨텐츠로서의 활용도도 필요하다는 생각을 갖게 되었다.

현행하는 휴대폰에 포함된 모바일 컨텐츠들 중에서 보완할 필요가 있는 것으로 계산기를 꼽았는데, 그 이유는 사용자에게 수수작업이 늘어나는 만큼 단순한 계산과 연산만이 가능하다 하였다. 이에 현재 모바일 컨텐츠의 사용자들은 어플리케이션을 이용하여 계산을 할 수 있도록 업그레이드한 실제적인 모바일 컨텐츠를 이용하고자 하였다.

제 2장 관련 연구

MSC가 제작된 WIPI플랫폼의 특성을 알아보고 일반 공학계산기와 사각연산만 가능한 휴대폰 계산기의 특징 및 활용성을 비교, 분석하였다. 이로 인해 MSC는 휴대폰 계산기의 단순 사각연산만의 한계를 넘어 공학계산기의 특성을 향상시켜 다양한 기능을 편리하게 사용하기 위해 모바일 플랫폼으로 개발하였다.

2.1 WIPI 플랫폼의 특징

WIPI는 C언어를 지원하는 바이나리 플랫폼과 자바언어를 지원하는 플랫폼의 기능 모두 지원한다. WIPI어플리케이션관리(WIPI Application Manager)를 두어 어플리케이션을 다운로드하여 관리하고, 각종 사용자 관리기능을 제공하며, 동적 화면 라이브러리 관리기능을 지원한다. 그리고 WAP보다 가벼운 대형 어플리케이션에서부터 게임, 콘텐츠가 생명을 이어 계산도 연동이 가능하다. 또한 키패드 키의 키를 입력한 후의 보완모델을 이용하여 타운상각사의 경계에 따라 접근권한 키를 이용할 수 있다. 이 때문에 “Public level”의 어플리케이션 개발이 개발자와 소비자에게 더 편리하게 사용할 수 있다. 또한 강력한 사용자 인터페이스의 지원으로 다양한 컨텐츠의 리소스 구조, 이미지 처리기술 등 적절한 API를 사용함으로써 개발자가 다양한 프로그램을 빠르고, 작게 구현할 수 있다.
그림 1. WIPI 플랫폼의 구조도

2.2 WIPI 플랫폼의 활용

MSC는 WIPI-C 기반에서 개발되었다. WIPI는 모바일 환경에서 사용되기 때문에 일반 PC환경과 다르게 많은 제약을 받는다. 한 예로, 부동소수점이 없기 때문에 이는 정수형 변환하여야 하는 단점이다. MSC의 경우에는 휴대폰에서 사용가능하게 하기 위해 WIPI 플랫폼을 이용하여 개발하였다. 또한 WIPI가 지원하지 않는 숫자의 크기가 크고 복잡한 공학적 연산을 WIPI 플랫폼에서 사용 가능하도록 하기 위해 새로운 저장구조를 필요로 하게 되었고, 이런 저장구조로 새로운 계산의 구조가 필요하였다. 또한, 자료구조는 각 동신사마다 제공하는 API가 조금씩 다르기 때문에 동신사별 환경에 맞게 개발하여야 한다. MSC에서는 SK WIPI SDK 환경에서 개발하였으며 특정 동신사의 개발환경에 영향을 최소화하기 위해 표준 WIPI 함수만 사용하였고, 이런 개발 환경에 따른 인터페이스를 변경하면 다른 동신사의 WIPI 환경에도 쉽게 적용가능 하다.

2.3 휴대폰 계산기와의 비교

현재 사용 중인 거의 모든 휴대폰에는 계산기가 탑재되어있다. 하지만 이들은 대부분 기존적인 사칙연산과 간단한 할수연산만 제공한다. 또한, 숫자의 길이가 매우 제한적이며, 크기가 큰 숫자에 대한 연산은 대부분 접근할 수 없게 되어있다. 동신에 PC보다 규모가 작아져야만 하는 모바일 환경의 제약사항 중 하나이다. 반면 MSC는 사칙연산은 물론 자주 사용되는 할수연산을 추가하였고 숫자의 길이에 대한 제약을 완화시키는 더 큰 연산도 가능하게 하였다.

2.3 공학용 계산기와의 비교

지난의 공학용계산기는 여러 전자회사에서 그 성능과 디자인을 다양하게 하여 출시되고 있으며 가격대 또한 다양하다. 또 다르게 접할 수 있는 공학용계산기로는 PC의 보조프로그램에 포함된 공학계산기가 있다. 이들은 십, 십곱, 소수, 표준변량, 그래프, 비수, 행렬, 연립방정식 등 다양한 연산을 제공한다 [3].

이에 모바일 공학용계산기는 가장 많이 사용되며 제한된 모바일 환경에서 사용이 용이한 연산을 제공한다. 사칙연산을 기본으로 하여 확장된 연산을 수행한다. 확장연산에는 삼각함수 (sin, cos, tan), cotan, cosec, sec, log, ln, r, i, j, (2Pi) (액트리알), (X, Y, Z, E) 등의 할수연산 및 Save, Load의 수식 저장 호출가능, 도달목 등이 포함된다.

3. 자료구조 설계

MSC의 주요 기능은 크게 일반 사칙연산과 확장연산으로 나누어져 있다. 하지만 공학계산기의 특징인 길이가 긴 복잡한 연산을 하기 위해서는 해당 데이터를 저장할 수 있는 자료구조가 필요하다.

3.1 저장구조 설계

WIPI 플랫폼의 모바일 환경을 위한 플랫폼이다 보니 여러 제약사항이 많이 그동 안에는 것도 많은 기존의 플랫폼의 자료구조를 사용할 수 없다. 또한, 사용가능하다. 또 공학계산기를 하기 위한 숫자를 표현하기에는 부족한 자료구조가 따로로 새로운 자료구조의 설계가 필요하다. MSC에서는 이러한 문제점을 컨텐츠에 적용하기 위해 char type을 기본으로 하는 문자열 구조로 데이터를 표현함으로써 길이가 긴 데이터와 문자가 같이 데이터까지 표현할 수 있게 하였다 [5]. 아래의 그림은 MSC에서 연산을 하기 위해 숫자를 입력하기 위해서는 메모리에 저장된 형태이다. 연산을 시작하기 전에 숫자, 연산자들을 분리하는 token 함수를 두어 숫자들을 분리하는 작업을 한 뒤 필요한 연산을 수행하게 된다. 아래 그림은 MSC의 데이터 저장 구조이다.

그림2. MSC 저장구조

그림 2에서 숫자 앞의 m과 p는 각각 음수(-)와 양수(+)를 표현하는 방법인데 이는 화면상에 출력되지 않으나 사칙연산의 +와 -의 구분을 위해 위와 같은 문자를 할당하여 문자열을 하고 화면에 출력될 때에는 p는 생략, m은 기호로 출력이 되어간다.
3.2 연산 우선순위 적용

연산을 하기 위해 가장 먼저해야할 않을 과호와 연산 우선순위를 정해야 한다. 먼저 1에서 모든 입력값이 하나의 묶음처럼 저장되어 있기 때문에 이를 분리할 수 있는 token함수를 두었다. 이때, 각각 3번의 테이블을 두어 문자열을 한번 스캔한 후, 우선순위별 분리작업을 순서대로 할 수 있게 하였다. 첫 번째는 과호를 최우선으로 2개의 숫자 사이에 1개의 연산자를 분리해내게 된다. 그때 분리된 숫자는 최상위 연산순위를 가지는 연산이 되게 되는데 이 연산을 가장 먼저 수행한 후, 결과 값을 다시 원래의 위치로 복구해놓으면 1개의 연산이 완료된다. 이를 반복하여 첫 번째 사이클에 해당하는 작업이 없는 경우에는 두 번째 사이클을 진행하게 된다. 두 번째는 과호, 나눗셈 연산을 진행한다. 이는 덧셈과 뺄셈보다 우선순위가 낮기에 먼저 진행하게 되는데 과호와 나눗셈 순서가 순차적으로 진행하는데 이 때문에 token 함수에서 분리할 때 앞에서부터 순서대로 연산식을 분리해내고 첫 번째 사이클과 마찬가지로 연산 후 계산식을 원래 위치로 되돌려놓는 방법으로 모든 결과값과 나눗셈 연산이 완료될 때까지 반복한다. 그 다음, 마지막 사이클인 과호와 몫을 수행하여 위의 방법들을 마찬가지로 진행하여 모든 연산을 수행하게 된다. 아래 그림3은 MSC의 우선순위 연산을 보여 준다.

![그림3. MSC 연산 우선순위과정](image)

그림3과 같은 방법으로 모든 연산이 끝나면 마지막 남은 데이터는 결과값이다.

3.3 char 타입을 바탕으로 하는 사칙연산

일반적인 사칙연산은 int나 float 그리고 double 형태의 타입으로 바로 연산이 가능하다. 그러나 MSC에서 사용하는 자료구조는 char 배열 형태의 구조를 사용하므로 위와 같이 사용 할 수가 없다. 따라서 모든 사칙연산에 대한 연산을 다시 만들어야한다. MSC에서는 먼저 연산을 시작하여 token함수에 의해 각각의 연산과 숫자를 분리해내는데 이때 사칙연산이 진행될 때, 정수형 또는 소수형을 구분하여 연산을 진행한다. 정수형과 소수형 각각 따로 연산을 하여, 각각으론 같이 추가적인 연산이 필요한 부분에 대해서는 따로 처리를 하고 부호에 대해서도 숫자 연산이 시작하기 전에 부호연산을 먼저 한다.

3.4 공학계 계산

일반적으로 공학계산은 사칙연산을 좀더 정확하게 표현한다. MSC에서는 string 형태로 데이터를 저장하기 때문에 숫자의 길이에 대해 크게 영향을 받지 않는다. 일반적으로 입력식이 입력되는 변수(m_string)의 크기가 200바이트이므로 200바이트 이내의 입력에 대해서는 대부분 연산을 할 수가 있다. MSC에서 지원하는 공학계산으로는 Z, S, E 등의 연산들을 지원한다.

3.5 연산식 속도개선 방안

공학계산은 사칙연산의 확장된 연산이 많기 때문에 사칙연산을 응용하여 연산을 진행하게 된다. 하지만, 공학 계산이 사칙연산보다는 많은 내부적 연산을 수행하게 되므로 휴대폰이라면 계약적인 환경에서는 대소 부담스러운 연산들도 있다. MSC에서는 이를 개선하기 위해 여러 방식이 많이 실험하고 있다. 일반적으로, 연산할 때마다 파이썬 언어나 C 언어와 같은 방식으로 연산을 수행하는데, 이것을 바탕으로 어떠한 연산도 가능하다. 또한, 과정에서 블록은 값에 따라 추가적인 연산이 더 필요한 경우에는 파이썬에서 연산을 일시적으로 블록이 끝나고 계속해서 연산을 진행한다.

4. GUI 설계

휴대폰이라는 제약적인환경에서 작은 LCD와 키패드는 많은 기능을 요구하는 공학계산기에는 많은 불편함을 유발할 수가 있다. 또한 휴대폰 단말기마다 약간씩의 입출력 환경이 다르기 때문에 인장점에 설계해 실현하고자 한다. 이러한 점을 보완하기 위해 보다 사용하기 편하고 효용적인 GUI 설계가 필요하다.

4.1 Display 설계

출력화면은 사용자가 입력한 데이터를 직접적으로 볼 수 있게 하는 장치로, 모든 입력 및 출력 내용이 이곳으로 출력된다. 공학계산은 복잡한 연산식이 많기 때문에, 크기가 작은 휴대폰 LCD화면에 전체 출력을 할 수 없는 경우가 많다. 이러한 단점을 보완하기 위해 MSC에서는 스크롤 기능을 지원한다. 스크롤기능이란, 길이가 긴 식이나 연산 결과를 앞에서부터 차례대로 블록으로 스크롤 모드를 활성화 하여 화면을 상하, 좌우로 이동시키면서 모든 결과값을 볼 수 있게 하는 기능이다. 이를 통해, 크기가 작은 휴대폰 LCD화면을 보다 넓게 사용할 수 있게 하였다. 아래 그림4는 MSC에서 숫자 연산 과정을 보여준다.

![그림4. 연산과정](image)
오른쪽에서 왼쪽으로 쓰인 글자와 수식이 조금 혼란스럽습니다. 다음은 정리된 내용입니다.

4.2 Key 성과

많은 종류의 입력을 요구하는 공학용계산기는 많은 수의 기능을 필요로 한다. 하지만, 휴대폰에서 제공하는 키는 숫자키, 메뉴키, 방향키로 공학용 계산기를 만드는데는 많이 부족하다. 현재 휴대폰에서 숫자키는 특수 문자나 숫자 문자를 입력할 경우에는 한 가지 키를 여러 번 누르면서 입력이 가능하게 되었다. 이를 공학용 계산기에 적용하기는 불편한 점이 많고, 입력 값이 대부분 숫자이기 때문에 입력오류를 일으킬 가능성이 높다. 이러한 단점을 보완하기 위해서 MSC에서는 숫자모드, 메뉴모드 등 Function 키를 활용한 입력모드 전환으로 숫자나 함수 등 계산적인 입력 인터페이스를 확장하였다. 또 모드에 따라 기능을 달리하면서 하나의 기능 여러 기능을 할 수 있게 설계를 하여, 입력기가 적은 휴대폰 환경에서 보다 편리하고 쉽게 사용할 수 있게 되었다. 예로, 숫자키 1은 숫자모드일 때는 숫자 1이나 화면에 출력하기 위해서, 모드 1(메뉴 기능 키로 높은 곳만)일 때에는 제공된 언어를 사용하게 하였고, 모드 2(메뉴 기능 두 번 높은 곳)에는 sin, log, etc 연산을 수행한다. 또한 방향키는 숫자모드일 때 각각 숫자 입력을 할 수 있게 되었지만, 스크롤모드로 활성화(동화버튼을 늘렸을 때)를 시키면 좌우로 화면을 스크롤 할 수 있다. 이는 기능적으로 제약적인 실용성의 단점을 보완하고 사용하기 편리한 설계로 휴대폰의 활용을 극대화 하였다. 그림 5는 메뉴버튼을 통한 모드 전환 시 해당기 기능을 알려주는 화면이다. 메뉴버튼을 반복하여 누르면 모드를 전환할 수 있다.

5. 구현 및 성능평가

이 절에서는 이제까지 살펴왔던 모바일 공학용 계산기의 자료구조 설계와 작동원리를 시험해보고 결과 값을 정확도를 확인해보기로 한다.

표 1. MSC에서 사용 가능한 연산과 추가기능

<table>
<thead>
<tr>
<th>연산구분</th>
<th>연산 종류</th>
</tr>
</thead>
<tbody>
<tr>
<td>사칙연산</td>
<td>+, -, *, /</td>
</tr>
<tr>
<td>삼각함수연산</td>
<td>sin, cos, tan, sec, cosec, cot</td>
</tr>
<tr>
<td>지수로그연산</td>
<td>x^2, x^x, a^b, log, ln</td>
</tr>
<tr>
<td>근사연산</td>
<td>e^x, π, %, x^1, x^2, μ</td>
</tr>
<tr>
<td>추가기능</td>
<td>Load, Save, Help</td>
</tr>
</tbody>
</table>

5.2 시험 환경 구성

MSC의 개발환경은 SK WIP SDK 에뮬레이터를 기본으로 개발하였다. 이것은 SK 텔레콤에서 제공하는 모바일 컨텐츠에 바로 적용가능하다. 에뮬레이터 속에서 테스트가 끝나면 실제 WPISI 지원 휴대폰단말기 LC CYON SV-590과 SKY IM-S110을 사용하여 시험을 진행하였다.

5.3 시험 결과 분석

시험 환경 구성 후 모바일 공학용 계산기의 연산결과에 대해 여러 가지 조건으로 실시하였다. 표 2는 모바일 공학용 계산기와 Windows 공학용계산기의 결과 값을 비교한다.

표 2. 모바일공학용계산기와 SHARP공학용계산기 결과값 비교

<table>
<thead>
<tr>
<th>식</th>
<th>모바일공학용계산기</th>
<th>Windows공학용계산기</th>
</tr>
</thead>
<tbody>
<tr>
<td>cos 45°</td>
<td>0.70710678</td>
<td>0.70710678</td>
</tr>
<tr>
<td>27°</td>
<td>19.683</td>
<td>19.683</td>
</tr>
<tr>
<td>5°</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>5.6(3.7+2.5)</td>
<td>34.72</td>
<td>34.72</td>
</tr>
<tr>
<td>85°</td>
<td>8.6022577</td>
<td>8.6022577</td>
</tr>
</tbody>
</table>

표 2에서 보는 바와 같이 모바일 공학용 계산기는 일반 공학용 계산기에 뛰어나지 않는 정확하고 빠른 연산을 하는 것을 볼 수 있다. 모바일 공학용 계산기의 산입함수 연산은 정확한 값의 도출을 위해 테이블을 사용하고 즉시 변경되므로, 정확도가 매우 뛰어난다. 산입함수 값은 소수점 아래 몇 자리까지 제공한다. 백터리이나 연산 역시 데이터를 사용지 않으므로 뛰어난 정확도와 함께 신속한 처리능력을 보유한다.
6. 결론

계산기 전반에 새로운 프로그램이 아니라 이미 많이 사용되어지고 있는 S/W이다. 그리고 공학용 계산기라는 하드웨어가 존재한다. 이를 휴대폰에서 사용하기위해 WIP를 플랫폼을 이용하여 MSC를 개발하였다. 물론 현재 휴대폰에도 계산기가 부가기능으로 존재한다. MSC는 일반 PC보다 빠른 접근성으로, 공학용 계산기보다 경제적으로 일반 휴대폰 계산기보다 많고 정확한 연산을 가능하게 하기 위해 새로운 계산 방식을 개발하고 다양한 연산 알고리즘으로 신속하고 정확하게 결과 값을 얻을 수 있다.

MSC의 공학계산을 필요로 하는 사용자들은 더욱 편리해질 것이다. 휴대폰에서 동작하는 보다 애플 공학용 계산기의 이점은 높은 가격의 공학용 계산기를 구입하지 않아도 정보이용료의 지원으로 공학용 계산을 할 수 있으며, 계속 소지하고 다니며로 이동이 간편하며, 추후에 소프트웨어 업그레이드를 통해 확장된 기능을 사용할 수 있다.

현재 MSC에는 기존 공학용 계산기의 모든 기능을 휴대폰에 담는 것이 불가하다. 소프트웨어 업그레이드로 향후 여러 가지 기능의 보완이 필요하다. 추후에 보완되었으면 하는 점으로는 DEC, HEX, OCT, BIN 등의 진수변환과 OR, XOR, AND 등의 진수연산까지 활용 가능하게 해야 한다. 수치, 계산기능과 그에 맞는 그래프기능의 카메라의 CCD화면을 능가하는 고해상도 스크린을 가진 휴대폰을 100% 활용하게 만들어 줄 것이다. 또 필수한 기능 중에 하나로는 미분과 적분을 짓는다. 마지막으로 사용하기에 더욱 편리한 디자인으로 포장된다면 좋을 것이다.

7. 참고 문헌

[3] SHARP 공학용계산기 EL-9650 사용설명서, 2004