휴대인터넷 기반의 실시간 스토리지를 이용한 응용 서비스 개발

이재현 1, 박재출 1, 허시영 2, 진중신 2

1 Oracle, {ihee0, parkh}@oracle.co.kr
2 KT, syeo, jongsaem@kt.co.kr

Development of real time storage services on WiBro network

Jaehyun Lee 1, Jaehong Park 1, Siyoung Heo 2, Jongsam Jin 2
1 Oracle Co., Ltd.
2 KT CORP.

요 약

휴대인터넷 기반의 응용 서비스로서 메시지를 교환할 수 있는 메신저 서비스와 바디플로와의 응용 통화 그리고, 스토리지를 연결한 실시간 스토리지 서비스 마지막으로 레이트 포용 체중에서 허용하는 동영상을 선택하여 플레이 할 수 있는 실시간 스트리밍 서비스를 할 수 있도록 각 서비스들의 구조 및 기능에 대하여 구현하였다. 본 응용 서비스를 활용하여 휴대인터넷 환경에서 사용자의 편리한 커뮤니케이션 서비스는 가미되었다.

1. 서론

WiBro는 언제, 어디서나, 이동 중에 높은 전송속도로 무선 인터넷접속이 가능한 서비스로서 정부의 적극적으로 추진하는 IT3939정책의 하나이다. 현재 통신과 금융, 교통, 방송 등 다양한 응용 서비스가 출현하고 있고 향후 더욱 활성화될 것으로 예측된다.

금융, 통신 등 다양한 산업 분야와 결합된 서비스를 WiBro 환경에서 안전하게 제공함으로써 유비쿼터스 사회를 조기에 정착시키는 것이다. 서비스의 편리성과 안전성을 동시에 확보하여 인간이 유비쿼터스 환경을 신속하고, 편리하게 사용함으로써 자연스럽게 적응하고 수용하게 될 것으로 예상된다.

WiBro 환경에서 편의성을 확보함으로써 서비스에 만족하는 여러 부분의 신규 영역에서 기존에 오프라인 또는 수동으로 행해지던 서비스가 온라인과 자동화로 전환되고 활성화될 것으로 예상된다.

1.1. 휴대인터넷 기술 동향

IFlash-OFDM(Orthogonal Frequency Division Modulation)은 Flairion사가 개발한 OFDM/FDD(Frequency Division Duplex) 기술방식을 사용하는 솔루션으로 측개 대역폭 1.25MHz, 사용자당 최대 3.2Mbps의 전송 속도를 제공하며 미국에서 시범 서비스 중이다.

Ripwave는 Navini사가 TD-SCDMA(Time Division Synchronous CDMA) 방식과 스마트 안테나를 사용하여 주파수 간섭을 최소화한 시스템으로 미국 스프린트, 벨사우스 등의 통신 사업자가 시범 서비스 중이다.

BroadAir는 미국의 Broadcastom사가 개발한 OFDMA/TDD 방식의 시스템으로 IEEE802.16 규격을 준수하여 측개 대역폭은 10MHz, 가입자당 최대 8Mbps로 서비스 커버지지는 10km로 캐나다에서 고정 무선 형태로 시범 서비스 중이다.

i-Burst는 미국 ArrayComm이 개발한 IP기반의 광대역 이동 무선인터넷 맥스체어 기술로서 스마트 안테나 기술을 장착한 기술을 사용하여 시스템 용량과 효율, 커버리지 및 서비스 품질을 증대시키고 있다.

일반 WiBro 정책의 가장 큰 특징은 '이동통신 시장의 경쟁 촉진'이라는 측면에서, 사업자 선정에 있어 이동통신 사업자를 배제하고 있는 것이다. 이동통신 사업자와의 경쟁을 향후 3G 이후 이동통신 시장의 경쟁을 촉진한다는 것이 전략적이다. 유선, 브로드밴드 사업자의 소프트뱅크BB, e 맥세트, NTT 커뮤니케이션스 등이 WiBro 시장 진입의사를 밝히고 있다.

유럽의 경우 AirData AG, Irish Broadband, UK Broadband 등이 2.6GHz와 3.5GHz 대역에서 실용 서비스를 제공하고 있다. 단 독일,영국, 아일랜드는 RAS간 핸드오프 기능을 급지하고 있어 단말기 이동성이 부재된 무선인터넷 서비스는 원활적으로 불가능하다.

국내에서는 한국전자통신연구원, 제조업체 및 통신사업자 등으로 민간 투자기업이 구성되어 2003년부터 2.3GHz 초고속 휴대 인터넷서비스 공동개발(HPI) 추진 중에 있다. ETRI에서는 3 Sector 구조를 기본으로 하는 세계 최초의 WiBro 선도 구현 시스템을 개발하고 2003년 12월 시연에 성공하였다. (주)케이티는 세계 최초로 국내 기술을 적용한 2.3GHz WiBro 서비스 시연을 2005년 11월 부산에서 열리 아시아 태평양경제협력체(APEC) 정상회의 기간 동안 주관하였다. APEC 정상회의가 열리는 BEXCO 전시장과...
해몬대, 동백섬 일대에서 WiBro 시연을 하였다. 이어 2006년 상반기 중 서울 등 수도권 지역부터 WiBro 상용서비스를 개시하고 2008년까지 단계적으로 전국 84개시도 지역을 확대할 예정이다.

1.2. 휴대인더넷 표준 동향
■ IEEE 802.16a/d

2 GHz~11 GHz를 지원하는 광대역 유선통신 시스템의 표준 규격인 IEEE 802.16a는 기존 802.16 Phy 계층 규격인 SC에 OFDM 및 OFDMA 규격이 추가되어, 2003년 9월 표준화가 종료되어 정식표준 문서가 발표되었다. IEEE 802.16a의 MAC 계층은 IEEE 802.16의 기본 MAC 규격을 그대로 채택하면서, 2 GHz~11 GHz 대역에서 가능한 비직점(NLOS: Non LOS) 통신을 고려하여 보다 신뢰성 있는 통신을 위해 필요한 추가적인 기능을 선택적으로 포함하고 있다.

IEEE 802.16d 규격은 IEEE 802.16a의 규격의 오류 및 모호성의 수정을 위해서 만들어졌으며, 2004년 5월에 최종 승인되었다.

■ IEEE 802.16e

IEEE 802.16e 규격은 현재 승인된 IEEE 802.16d 규격을 기반으로 단말의 이동성과 이용제한을 해소하고 하여 서비스를 효율화함으로 확장하는 것을 목표로 한다. 2002년 12월부터 활동을 해오고 있으며 16e의 주요 기능을 분석하면 링크버짓 황점, 단말 고속 이동통신을 가능하게 하는 방안, 전송속도, 저전력 모드 등이 주요하게 되고 있다. 주요 참여 업계는 삼성, ETRI, Intel, Runcorn, (주)케이티, SKT, Alvarion 등을 들 수 있다.

2005년 7월에는 화재에 대한 기술적 틀을 거쳐 802.16e의 이동성 능성을 개선시킬 수 있는 보안, Handover, Sleep/Idle/Awake mode, 전력저감, 다중 안테나 기술 등이 규격에 포함되었다.

■ IEEE 802.20 MBWA

IEEE802.20 MBWA는 2003년 1월 본격적으로 구성되어 새로운 시스템을 위한 표준화 문서를 현재 활발하게 개발하고 있음을, 802.16e와 802.20의 주요 차이점은 다음과 같다.

802.16e는 2~6 GHz licensed 대역에 이동성 지원 기술이나, 802.20은 3.5GHz 이하의licensed 대역을 목표로 하고 있다.

802.16e는 종저속의 PDA 또는 laptop 사용자를 목표로 하고 있으나, 802.20은 고속 이동성 향상을 위한 4G 셀룰러기술을 목표로 하고 있다.

802.16e 규격은 기존의 규격 IEEE 802.16a/d를 기반으로 하는 반면, 802.20은 새로이 정립되며 규격이기 때문에 802.16e 관련 서비스제품들은 802.20 이전에 상용화가 될 것으로 보인다.

■ TTA 표준화 동향

한국에서의 WiBro 서비스를 위한 규격 개발을 목적으로 2003년 7월 TTA 산하에 WiBro 프로젝트 그룹 (PG302)이 결성되었다. PG302는 산하에 2 개의 심의원 (무선접속 심의원, 서비스 및 네탕워크 심의원)과 2 개의 Ad Hoc Group (PR Ad Hoc Group, 국제협력 Ad Hoc Group)를 두고 있다. 무선접속심의원은 물리계층PHY과 매체접근계층(EAC)의 규격을 개발하는 것을 목표로 한다. 서비스 및 네탕워크 심의원은 서비스 및 네탕워크의 요구사항을 정의하며, 그에 따른 네탕워크 프로토콜과 관련 요소기술에 대한 표준화를 개발하는 것을 목표로 한다.

2. 본론

모바일 환경에서 대부분의 단말 기기는 저전처리지의 제한이다. 모바일 단말들은 이동성을 제공하기 위하여 전자 소형화 되고 있는 추세이며 이 같은 소형화는 환경의 향상화를 위해 해당 기기의 저전 메모리 크기를 제한하게 되었다. 이로 인해 대부분의 멀티미디어 응용은 단말기에 저장에 어려움을 겪고 있다. 최근 이들을 극복하려는 CF(Compact Flash)나 SD(Smart Drive)를 이용하고 있으나 이것은 기기과 서비스면에서 한계점을 가지며, 이에 저전 공간의 제약성은 각종 응용의 사용에 있어 제약 사항으로 높아졌다. 그러므로, 휴대인더넷 환경에서 적합한 커뮤니케이션 응용 서비스 모델이 개발되지 않은 상황이다. 따라서, 본 연구에서는 이러한 문제점들을 해결하기 위하여 휴대인더넷 환경에서 모바일 단말기기 기반의 실시간 스트리밍을 응용한 휴대인더넷 응용 서비스를 소개하고, 이를 이용하면 사용자간 커뮤니케이션을 허용하고, 멀티미디어를
공유하여 사용자간의 컨텐츠 활용을 높이고, 대용량 저장공간을 갖는 서버와의 연결을 통하여 사용자 간의 별도의 저장공간을 극복할 수 있도록 할 수 있는 서비스를 개발하였다.

2.1. 서비스 구성

![Diagram of network services](image)

<그림 1> 휴대인터넷 시형양 구성도

<그림 1>은 휴대인터넷 기반의 실시간 스트리밍을 이용한 응용 서비스를 개발하여 시형하기 위한 양 구조도이다. 본 응용 서비스를 구축하기 위해서는 사용자 관리 서버와 스트리밍 서버, 그리고 휴대인터넷 환경에서 접속이 가능한 사용자 단말이 필요하다.

2.2. 서비스 기능 분류

![Service classification diagram](image)

<그림 2> 휴대인터넷 응용 서비스 구성도

<그림 2>는 본 연구에서 개발된 응용 서비스에 대한 전체 기능 분류도이다. 각 기능 분류에 대한 상세한 내용은 아래와 같다.

- Controlling block
 log in, log out 기능, control buddy & group 기능은 buddy management, Group management를 처리한다. Buddy 및 group의 add, Remove, change buddy group 등으로 동작한다. control my status는 change nickname과 change status로 동작하며, 각 상태는 log-in : "log in" 되어 있는 상태, log-off : "log off"로 표시하도록 변경, not hear : "차기 비응"으로 표시하도록 변경, other action : "다른 작업 중"으로 표시하도록 변경, coming soon : "곧 돌아오겠음"으로 표시하도록 변경 등으로 표시할 수 있다. system tray의 control window는 main window popup(client agent main window를 popup 시키는 기능)의 동작을 할 수 있다. 그 밖의 tray에서의 기능은 log out(log out window를 popup 시키는 기능), messenger alarm(buddy로부터 도착한 message가 있을음을 알리는 기능), contents service alarm(Contents service가 도착했음을 알리는 기능), broad service alarm(broad service가 도착했음을 알리는 기능), shutdown(main program을 종료하는 기능) 등이 있다.

- Communication block
 resolving IP address의 처리 기능은 buddy의 IP address를 resolve 하는 기능과 connection messenger 기능 그리고, 재팅용 messenger의 연결 기능, connection VoIP 기능, 응성통신통 talk tool 실행 기능, connection storage 기능, storage 연결 기능, connection streaming 기능, contents 목록에 의한 streaming 연결 기능이 있다.

- Service processing block
 messenger service에는 user의 status에 따른 메시지 송수신 기능이 있고, VoIP service에는 User의 status에 따른 응성 송수신 기능이 있다. Storage service에는 서버 및 단말 간의 storage 공유 기능이 있다. Streaming service로는 컨텐츠 목록별 streaming 서비스가 있다.

2.3. 상세 개발내용

- 메신저 서비스

![Messaging service flowchart](image)

<그림 3> 메신저 서비스 프로토

<그림 3>은 사용자가 특정 버디를 선택하여 메신저를 활성화 시켜 메시지를 교환한다. 사용자가 선택한
버디의 정보(주소 등)를 서버로 요청한다. 버디 리스트 창의 특정 버디를 선택하여 응답 메뉴(메이스 오른쪽 버튼) 혹은 메뉴 버튼을 통하여 메시지를 활성화 시킨다. 상대 버디는 메신저 연결 요청 메시지를 통하여 현재 메시지를 전송하는 버디가 있다는 것을 감지한다. 사용자는 접속된 메신저의 입력란에 메시지를 입력하고 전송(엔터 혹은 전송 버튼)한다. 양쪽 사용자의 메신저에 메시지를 표시한다.

음성통화 서비스

![음성통화 서비스 플로우](image1)

그림 4는 사용자가 특정 버디를 선택하여 음성통화를 활성화 시켜 음성 통신을 한다. 사용자가 선택한 버디의 정보(주소 등)를 서버로 요청한다. 버디 리스트 창의 특정 버디를 선택하여 응답 메뉴(메이스 오른쪽 버튼) 혹은 메뉴 버튼을 통하여 음성통신 응용을 활성화 시킨다. 상대 버디는 음성통화 연결 요청 메시지를 통하여 현재 음성통화를 요청하는 버디가 있다는 것을 감지한다. 상대방 사용자가 이를 수락할 경우 상대방 사용자도 음성통신 응용을 실행시킨다. 사용자는 접속된 음성통신 응용을 통하여 음성을 송수신한다. 양쪽 사용자의 헤드셋을 통하여 들고 말한다.

![음성통화 SIP 호 플로우](image2)

그림 5는 음성통신 연결을 위하여 요청자는 피요청자를 invite하고, 이를 수락한 피요청자의 음성 통신 데이터는 RTP를 통하여 전달된다.

실시간 스토리지 서비스

![스토리지 서비스 플로우](image3)

그림 6은 스토리지 서버와의 실시간 스토리지를 연결한다. 메인 메뉴창의 스토리지 버튼을 클릭하여 스토리지 연결 팝업 메뉴를 실행한다. 서버 주소 등의 정보를 입력하여 스토리지 연결을 시도한다. 연결된 서버의 스토리지 영역을 표시한다. 특정 버디를 선택하여 실시간 스토리지를 연결한다. 선택된 버디의 정보를 서버로 요청한다. 상대방 사용자에게 스토리지 연결을 요청한다. 연결된 사용자의 스토리지 영역을 표시한다.

![ISCSI 스토리지 연결 호 플로우](image4)

그림 7은 스토리지 연결을 위한 절차는 사용자 단말과 스토리지 서버간의 TCP 연결을 통하여 로그인(스토리지 전용) 절차를 수행한다.
2.4. 개발 결과

3. 결론

3.1. 활용방안

3.2. 개선방안

본 연구에서 구현한 응용 서비스는 Linux 기반의 응용으로써 병원의 원격의료 서비스를 실행해야 한다.
안정적인 연구가 필요할 것이다.
또한, 가정이나 기업등의 실용이 예상되는 휴대인터넷 기반의 여러가지 상황과 사용자가 적극 사용할 수 있는 여러가지 시나리오에 대한 분석을 수행하여 본 응용 서비스가 휴대인터넷 환경에서 보다 편리하게 서비스들을 이용할 수 있도록 통합형 응용 서비스로 추가적인 기능들을 추가 개발하여야 할 것이다.

논문사사(Acknowledgement)
본 연구는 정보통신부 및 정보통신연구진흥원의 IT 신성장동력기술개발사업의 일환으로 수행하였습니다.
[2006-S-010-01, IPv6 기반 WiBro 이동성 기술 및 이동 AP 시스템 개발]

4. 참고문헌

332