모바일 단말기로 위치기반 검색어 추천 시스템

이광조 송진우 한정석 양성봉
연세대학교 컴퓨터 과학과

klee5435@gmail.com fantaros@cs.yonsei.ac.kr leohan@cs.yonsei.ac.kr yang@cs.yonsei.ac.kr

Location-based Keyword Recommendation System For Mobile Device

KwangJo Lee, JinWoo Song, JungSuk Han, Song-Bong Yang
Yonsei University, Dept. of Computer Science

요 약

모바일 단말기의 발달로 인해 위치기반 검색어 추천 시스템의 필요성이 증가하고 있다. 모바일 단말기 특성상 검색어 입력에 어려움이 존재한다. 이러한 문제점을 해결하기 위해 입력 버튼의 개선과 방식의 변화, 추가적인 저장공간을 두어 자주 쓰는 단어를 저장하는 방법으로 개선하였다. 또한 모바일 단말기의 특성에 입박서의 가능성은 고려하는 방법은 사용되지 않았다. 본 논문에서는 검색어 추천 시스템을 통해 입력의 편익을 증가하고, 검색의 정확성을 높이기 위해 이동성을 고려한 검색 방식을 제안한다.

1. 서론

최근 위치기반 검색의 발달로 인해 단말기를 이용한 인터넷 검색이 활발해지고 있다. 검색어 입력의 효과적인 방법을 위해서 천진인, 질의(query) 키보드 등의 하드웨어의 가능성을 고려한 방법과, 사용자의 즐겨찾기, 저장된 검색어 등을 이용한 소프트웨어의 가능성 측면을 고려한 방법이 제시되었다. 본 논문에서는 이에 Wired된 인터넷 환경에서 이용되어진 자소단위 검색어 시스템을 위치기반 환경에서 구현하고, 위치정보를 포함하여 검색하는 시스템을 제안한다. 이를 통해서 해당 지역에서 검색어인 검색어들로 추천함으로써 이용하는 단말기의 특성을 살려 검색을 수행할 수 있고 자동완성을 제공함으로써 입력에 불편함을 느끼는 사용자가 직접 입력을 할 수 있도록 도와준다.

2. 모바일 환경에서 검색 시스템

2.1. 모바일 인터넷 환경

오늘날 정보통신 기술의 발달로 정보화 시대는 우리 실생활과 밀접한 관계를 맺게 되었다. 예컨대, 이동통신 기술의 발전에 따라 사용되는 데이터 양이 증가하였으며, 컴퓨터 하드웨어와 소프트웨어의 발달로 인해 기기에 대한 정보를 쉽게 검색할 수 있게 되었다. 특히, 이러한 디지털 방식의 전자 정보 교환은 텍스트, 음성, 영상 등 필요한 데이터를 그 형태에 관계없이 시간과 공간을 초월하여 제공할 수 있게 하였다. 단말기의 특성에 입박서의 가능성은 고려하는 방법은 사용되지 않았다. 본 논문에서는 이에 Wired된 인터넷 환경에서 제공하는 인터넷 서비스는 네이버, 구글 등과 같은 포털사이트를 통해 사용자들이 접속하여 이용한 검색어를 모두 데이터베이스에 저장한다. 따라서 사용자의 특성에 입박서의 가능성은 고려한 기기에 따라 검색어를 추천할 수 있는 것이 가능하다. 단, 모바일 단말기는 검색어 추천 방법이 단말기에 저장된 정보만으로 실행됨에 따라, 메모리의 한계 등으로 인해 PC 환경의 경우와 같은 효율적인 검색어 추천이 불가능하다.

 לכן, 이동통신 단말기가 제공하는 검색어 추천 방법은 사용자의 위치를 고려하지 않는다. 본 논문에서는 위치기반 검색어 추천 시스템을 개발하여, 검색어 입력 방법을 개선하고, 검색을 빠르고 정확하게 수행할 수 있는 시스템을 제안한다.
이동통신 단말기를 이용하여 검색하는 경우에는 사용자의 현재 위치가 일정한 관련성을 내포하고 있다. 예컨대, 사용자가 어떤 특정 장소에 있는 경우 휴대폰을 이용하여 그 부근의 '맛집'을 확인하고자 하는 경우 등이 이에 해당한다. 이와 같은 경우, 이동통신 단말기에 사용자의 위치를 고려하여 검색어를 추천한다면 보다 효율적일 수 있었으나, 채용의 경우 그러지 못해 이동성이 특징인 이동통신 단말기의 장점을 전혀 살리지 못하였다.

본 논문에서는 위치정보를 이용하여 자소단위 입력을 감지하여 검색어를 자동 추천하는 시스템을 제안하여 이론 문제점을 해결하고자 한다.

3. 위치기반 검색어 추천 시스템

위치기반 검색어 추천시스템은 모바일 환경에서 입력의 어려움을 해결하고 위치정보를 이용하기위한 검색어 추천 방식으로서 검색어의 자소단위 정보와 위치정보를 고려하여 검색어를 추천하여 정확성을 향상시키는 방법이다.

3.1. 시스템 구조

전체적인 시스템 구조는 그림 1과 같다. 단말기는 WiFi, 3G, CDMA망 등을 통해 인터넷에 연결되어 서버와 통신하고, 서버는 데이터베이스로부터 단말기가 보낸 정보인 검색어와 위치정보를 기반으로 추천어를 얻어내어 단말기에 추천어를 제공한다.

![그림 1 시스템 구성](image)

3.2 단말기 시스템

단말기 시스템은 GPS 모듈, 사용자 인터페이스, 소켓 모듈로 구성된다. GPS 모들은 사용자의 위치정보를 GPS장치로부터 얻어오는 모듈이다. 얻은 위치정보는 NMEA 코드로 표기되며, 이 정보에서 얻는 정보에 경도와, 위도 값을 추출하면 된다. 사용자 인터페이스는 사용자의 입력과, 검색어의 디스플레이를 담당하는 부분으로, 사용자의 입력에 있어서는 자소단위 입력을 감지할 수 있어야한다. 소켓모들은 사용자를 입력한 검색어와 위치정보를 인터넷 양을 통해서 서버에 전달하는 역할과, 서버로부터 검색어를 전송받는 역할을 한다.

3.3 서버 시스템

서버 시스템은 자소분리모듈, 지역코드 획득모듈, 추천 검색어 획득모듈, DB접속모듈로 이루어진다. 자소분리모듈은 입력된 유니코드가 자소단위로 분리되는 특성을 이용한 것으로 입력된 유니코드 한글에 대해서서 식1과 같은 과정을 거쳐 자소분리로 수행한다.

<table>
<thead>
<tr>
<th>식 1 환경 유니코드 결정, 분리식</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaseVal(유니코드형 시작 위치) = 0xac00</td>
</tr>
<tr>
<td>유니코드 = (((초성 * 19) + 종성) * 28) + 종성 + BaseVal</td>
</tr>
<tr>
<td>Uncinf = Unicode - BaseVal</td>
</tr>
<tr>
<td>초성 = (Uncinf / 0x21 * 0x28 0x21)</td>
</tr>
<tr>
<td>종성 = (Uncinf % 0x21) / 0x28</td>
</tr>
<tr>
<td>종성 = (Uncinf % 0x21)</td>
</tr>
</tbody>
</table>

![그림 2 시스템 동작 순서도](image)

그림 2 2 시스템 동작 순서도

이동통신 단말기에서 입력을 감지하며 위치정보와 검색어를 서버에 전송하게 되고 서버로부터 검색어 추천을 대기한다. 서버는 단말기로부터 접속을 대기하고 있다가 접속이 이루어지면 위치정보와 검색어를 전송받고, 받은 정보를 기반으로 데이터베이스에 저장되어있는 테이블로부터 추천 검색어를 생성한 후 단말기에 추천 검색어를 전송한다. 대기 중이 이었던 단말기는 추천 검색어를 전송받아 사용자에게 리스토 등을 보여주게 되고 사용자가 검색어를 선택하게되면 단말기상의 브라우저의 기본 검색어 사이트에 해당 검색어로 검색 결과를 생성하여 전송한 후 결과를 보여준다.

3.4 단말기와 서버시스템의 동작과정

3.5 데이터베이스 구성

데이터베이스 테이블은 두 가지로 분류된다. 첫 번째 테이블은 지역정보를 가지고 있는 테이블로서 각 지역의 영역정보를 담고 있으며, 두 번째는 검색어 정보를 담고 있는 테이블이다. 이를 통해 영역정보의 정확한 지역 정보를 원활한 검색어 정보를 제공할 수 있다.
3.6 통신 메시지 구조
서버와 단말기 사이의 통신 메시지 구조는 다음과 같다.
/메시지/메시지추가정보/END/
모든 메시지의 마지막은 /END/이다. 메시지의 종류는 표1과 같다.

<table>
<thead>
<tr>
<th>메시지</th>
<th>의미</th>
<th>사용 예</th>
</tr>
</thead>
<tbody>
<tr>
<td>FND</td>
<td>검색요청</td>
<td>/FND/알바간, 한국/END/</td>
</tr>
<tr>
<td>LST</td>
<td>결과리스트 반환</td>
<td>/LST/번호1,2,3/END/</td>
</tr>
<tr>
<td>MOK</td>
<td>메시지 정상 수신</td>
<td>/MOK/END/</td>
</tr>
<tr>
<td>MFA</td>
<td>메시지 수신 오류</td>
<td>/MFA/END/</td>
</tr>
</tbody>
</table>

4. 시스템 구현
시스템의 구현은 MOBILE 5.0을 이용하는 단말기를 기준 으로 설계하였다. C#을 이용하여 단말기와 서버프로그램을 구현하였다.

그림 5는 단말기 화면의 모습이다. (a)는 프로그램을 시작했을 때, (b)는 검색이 완료를 시작했을 때, (c)는 (b)에 이어서 검색어 입력하는 장면이고, (d)는 추천된 검색어를 선택하여 검색 페이지를 불러오는 장면이다.
5. 결론

본 논문에서는 기존의 wired된 인터넷 환경에서 자동완성의 이점을 휴대형 단말기의 입력의 어려움을 보완하기 위해 적용하였고, 위치정보를 적용시켜 단말기의 이동성을 고려한 검색을 제안하였다.

6. 사사

이 논문은 교육인적자원부지원 연세대학교 BK21 지능형 모바일 서비스를 위한 차세대 단말 소프트웨어 사업단의 지원을 받아 연구되었음.

7. 참고자료

그림 7 자소 분리 모듈

그림 8는 서버의 추천어 검색 코드의 일부이다. 추천어 검색은 자소단위가 일치하는 부분을 추출하는 과정이다.

```java
public List<string> find_same(List<string> str1, string str2)
{
    List<string> data = new List<string>();
    List<string> result = new List<string>();
    // 입력받은 입력어를 분리함
    string temp = Separate(str2);
    // 입력받은 문자열을 [키워드]로 분리해서 data에 저장
    foreach (string i in str1)
    {
        data.Add(Separate(i));
    }
    bool b-ok;
    for (int i = 0; i < data.Count; i++)
    {
        string i = data[i];
        b-ok = true;
        int length = i.Length;
        if (temp.Length < length)
        {
            for (int k = 0; k < temp.Length; k++)
            {
                if (temp[i] == temp[k])
                {
                    b-ok = false;
                }
            }
        }
        if (b-ok == true)
            result.Add(str1[i]);
    }

    return result;
}
```

그림 8 자소단위 비교