로케이션 캐시 시스템의 효율을 개선한 스피시피-웨이 캐시 시스템
윤상호 이인환
한양대학교 전자컴퓨터통신학과
shyun@csl.hanyang.ac.kr ihlee@hanyang.ac.kr

Specific-Way Cache System: An Efficient Location Cache System
Sangho Yun Inhwan Lee
Dept. of Electronics and Computer Engineering, Hanyang University

요 약
접합-연관 캐시는 직접-사상 캐시보다 적용률이 높다는 장점이 있는 반면, 전적 소모가 많다는 단점이 있다. 그러한 단점을 보완하기 위해 웨이-프리딕팅 셋-어소시에이티브 캐시, 로케이션 캐시 시스템 등의 연구들이 계속되었다. 본 논문에서는 로케이션 캐시 시스템에서 사용할 수 있는 논점을 살펴보고, 이를 효율적으로 극복할 수 있는 스피시피-웨이 캐시 시스템을 제안하였다. 또한 SimpleScalar와 MiBench를 이용하여 스피시피-웨이 캐시 시스템의 성능을 측정하였고, 그 결과 39.6%의 예상-적용률이 나타난 것으로 확인되었다.

1. 서론

2. 관련 연구
2.1. 페이즈드 캐시
전적 소모 문제를 해결하기 위해 Atsushi Hasegawa 등은 페이즈드 캐시(Phased Cache)를 제안하였다 [3]. 페이즈드 캐시는 접합-연관 캐시에서의 접근(access)을 두 단계로 나누었다. 첫 번째, 각 웨이의 태그 열(tag arrays)이 별도 접근되고, 이 과정 동안 데이터 열은 접근되지 않는다. 두 번째, 태그 열의 비교 후 적절하면 데이터 열(data arrays)이 접근된다. 이렇게 페이즈드 캐시는 전적소모를 감소시키기 위해 태그 열과 데이터 열을 분리시켜 접근함으로써, 실패시의 불필요한 데이터 열 접근을 억제한다.

2.2. 웨이-프리딕팅 셋-어소시에이티브 캐시
웨이-프리딕팅 셋-어소시에이티브 캐시(Way-Predicting Set-Associative Cache)는 접합-연관 캐시에서 각 웨이가 별도로 접근되기 전에 한 개의 웨이만을 예상(predict)하여 접근하는 기술이다 [5]. 예상이 적정(prediction-hit)되면, 예상했던 웨이의 캐시 접근은 성공적으로 완료되고 해당 웨이의 전적 소모만이 일어난다. 그러나 예상이 실패(prediction-miss)하게 되면 캐시는 그 후 남아있는 다른 웨이를 검색하고, 그로 인해 캐시 접근 시간이 증가한다. 즉 적절한 높을 수록 웨이-프리딕팅 셋-어소시에이티브 캐시의 전적 소모가 줄어들 수 있다.

2.3. 로케이션 캐시 시스템
여러 웨이 가운데 앞으로 참조할 웨이에 대한 정보를 로케이션(Location Cache)이라 한다. 그 정보가 저장되는 캐시를 로케이션 캐시(Location Cache)라 하고, 로케이션 캐시가 내장되어 있는 시스템을 로케이션 캐시 시스템(Location Cache System)이라 한다 [6]. 로케이션 캐시는 L1 캐시와 병렬로 접근된다. L1 캐시에서 실패가 일어나고 이어서 로케이션 캐시에서 적중이 일어나게 되면, L2 캐시는 로케이션 캐시에 의해 출력된 웨이 정보(way information)를 입력 받는다. 로케이션 캐시로부터 입력 받은 웨이 정보가 올바르다면, L2 캐시는 그 정보에 따라 직접-사상 캐시처럼 동작한다. 물론 L2 캐시가 직접-사상 캐시처럼 동작한다 하더라도, 특정 웨이로 접근된 L2 캐시에서 실패가 생길 수 있다. 로케이션 캐시에서 출력된 웨이 정보가 올바르지 않을 수도 있기 때문이다 [6].
3. 로케이션 캐시 시스템 분석

로케이션 캐시 시스템은 생각해 볼 만한 여러 논점이 존재한다. 본 논문에서는 그 중 두 가지 사항에 대해 다루고 보자 한다.

로케이션 캐시 시스템은 컨벤션얼 캐시 시스템(conventional cache system)에 비하여 추가의 메모리 공간을 요구한다. 그림 1은 Rui Min 등이 제안했던 로케이션 캐시 시스템이다. 이는 L2 캐시의 업적이 2일 뒤에 큰 규모를 도식화 한 것으로, 컨벤션얼 캐시 시스템에 로케이션 캐시가 추가되어 있다. 문제는 L2 캐시의 기본적인 메모리 캐시와 달리, L2 캐시의 업적 경로를 가진 메모리 캐시의 메모리가 더 줄어들게 된다는 데에 있다 [6]. 가령 L2 캐시의 업적 경로가 8라고 하면, 총 16개의 메모리 캐시의 메모리가 필요하다. 로케이션 캐시 시스템에서도 캐시 메모리의 높은 L2 캐시 메모리를 통해 메모리 정보를 만들어내도록 설계되어 있기 때문에 이와 같이 추가의 메모리가 필요하다. 또한 이렇게 추가된 L2 캐시 메모리가 필요하게 됨에 따라, 각 캐시 메모리를 비효율적 L2 캐시의 업적 크기를 검토할 수 있다.

이에 의하여 로케이션 캐시 시스템에서 생각해 볼 만한 사항이라면 하나 더 존재한다. 바로, 로케이션 캐시가 항상 L1 캐시에 병렬적으로 동작한다는 점이다 [6]. 그림 2에서 로케이션 캐시는 L1 캐시와 같은 메모리 상에 존재한다. 즉 L1 캐시를 통한 접근도 새로운 로케이션 캐시를 통한 접근도 가능하다. 그렇기 때문에 로케이션 캐시 시스템의 중요성은 높아졌다. 로케이션 캐시의 출장소 정보를 사용하여 이상경의 로케이션 캐시의 결과가 더 정확성을 유지하기 위해서는 L1 캐시가 반드시 사용되어야 한다는 것을 알 수 있다. 그러나, 문제는 L1 캐시가 충정할 때마다, 로케이션 캐시가 출력하는 메모리 정보는 메번 섭기는 데에 있다 [6].

4.2 L2 캐시 태그 증폭 회피

스피시릭-웨이 캐시 시스템은 로케이션 캐시 시스템에 없고 있는 L2 캐시의 캐시 증폭 문제를 회피하기 위해(그림 5), 웨이 정보 추출 방법으로 로케이션 캐시 시스템에서는 L2 캐시의 캐시 태그를 이용해야 했지만, 스피시릭-웨이 캐시 시스템은 L2 캐시의 태그로부터 웨이 정보가 바로 추출되는 구조를 갖고 있기 때문이다. 따라서 L2 캐시의 태그 증폭을 회피하여 웨이 정보를 출력함으로써, 추가의 비용을 크게 줄여서 효율을 높인다.

4.3. 개선된 스피시릭-웨이 캐시 접근

또한, 스피시릭-웨이 캐시 시스템은, 로케이션 캐시 시스템에서의 사용되지 않은 채 폐기되는 로케이션 캐시의 접근 방식을 개선하였다. 로케이션 캐시가 L1 캐시와 병렬적으로 접근되었던 반면, 스피시릭-웨이 캐시는 그렇지 않다는 것을 그림 6에서 보다.

5. 성능 실험


![그림 4 스피시릭-웨이 캐시](image)

![그림 5 스피시릭-웨이 캐시 시스템의 볼록다이어그램](image)

![그림 6 스피시릭-웨이 캐시 시스템](image)

![그림 7 스피시릭-웨이 캐시 시스템의 알고리즘](image)
표 2 벤치마크 구성

<table>
<thead>
<tr>
<th>캐시</th>
<th>라인 크기 (바이트)</th>
<th>연관 정도</th>
<th>전체 크기 (바이트)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 명령 캐시</td>
<td>16</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>L1 데이터 캐시</td>
<td>16</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>L2 명령 캐시</td>
<td>16</td>
<td>4</td>
<td>2048</td>
</tr>
<tr>
<td>L2 데이터 캐시</td>
<td>16</td>
<td>4</td>
<td>2048</td>
</tr>
<tr>
<td>스피시컬-웨이 캐시</td>
<td>1</td>
<td>1</td>
<td>32-512</td>
</tr>
</tbody>
</table>

그림 8 스피시컬-웨이 캐시의 예상-적중률


MiBench를 이용한 벤치마크의 결과 평균 39.6%의 예상-적중률을 나타내었고, 예상의 영향을 가장 많이 받는 벤치마크는 susan인 것으로 나타났다.

6. 결론

접합-연관 캐시는 직접-사상 캐시보다 적중률이 높다는 장점이 있는 반면, 전력 소모가 많다는 단점이 있다. 그러한 단점을 줄이기 위해 웨이-프리딕팅 샷-어소시에이티브 캐시, 로케이션 캐시 시스템 등의 연구들이 계속 되어왔다. 본 논문에서는 로케이션 캐시 시스템에서 발생하는 L2 캐시의 태그 및 비교기 중복, 그리고 로케이션 캐시의 사용되지 않은 채제기되는 접근 방식을 개선하여, 보다 효율적인 스피시컬-웨이 캐시 시스템을 제안하였다. 또한 Simplescalar 3.0을 이용하여 평균 39.6%의 예상-적중률을 측정하였다.

참고문헌