Arsenic removal from Water by Nanofiltration Membrane

Cuong Manh Nguyen · Sunbaek Bang · Jaeweon Cho · Kyoung-Woong Kim*

1. Introduction

Elevated arsenic levels can cause skin cancer and internal malignancies after continued exposure for 10–30 years. Berg et al. (2001) firstly issued a publication on arsenic contamination of the Red River alluvial tract in Hanoi, capital city of Vietnam. After treatment tap water generated from all treatment plants contained more than 10 μg l⁻¹ of arsenic. In 1993, the World Health Organization (WHO) recommended a maximum arsenic concentration of 10 ppb as a provisional guideline. In 2002, Vietnamese government adopted this guideline as Vietnamese arsenic drinking water standard (TCVN, 2002). Among technologies for arsenic removal, Nanofiltration (NF) has been identified as a potential alternative for reverse osmosis (RO). The objective of this study is to investigate arsenic removal by a commercial NF membrane (NE90) with respect to performance and mechanism. The knowledge gained from this study will aid in the enhancement of arsenic removal in water treatment facility.

2. Materials and Methods

2.1. Solution chemistries

All salt solutions utilized in this research were prepared fresh using NaCl (Merck), CaCl₂ (Fluka), NaHCO₃ (Sigma) and Na₂SO₄ (Sigma), NaH₂AsO₄·7H₂O (Sigma) and As₂O₃ (Aldrich) were used to prepare 1 g l⁻¹ arsenate (As(V)) and 1 g l⁻¹ and arsenite (As(III)) stock solutions respectively.

2.2. Membrane and membrane test unit

A thin film composite (TFC) polyamide NF membrane (NE90) in the form of (6cm x 12cm) flat sheet was used. The membrane characteristics are presented elsewhere (Nguyen M. C., 2006). A bench-scale plate-and-frame single membrane filtration test unit was constructed for the NF studies. The membrane cell operated in cross-flow mode with feed flow rate of 400 cm³ min⁻¹ at 25°C; both permeate and retentate were recycled; pressure was varied from 96.5 to 386.0 kPa (20–80 psi).

2.3. Sample analysis

The separation of the individual NaCl, Na₂SO₄ and CaCl₂ salt solutions was evaluated from conductance measurements using conductivity meter (Thermo Orion 3 Star, USA). Arsenic concentration was analyzed by GF-AAS in comparison with ICP-MS for both permeate and feed samples.

Keywords: Arsenic; Arsenic removal; Nanofiltration membrane; Water

* Gwangju Institute of Science and Technology (kwkim@gist.ac.kr)
3. Results and discussion

3.1. Individual salt rejection

CaCl₂, NaCl and Na₂SO₄ are usually utilized as model individual salts for investigation of the rejection performance of NF membrane. The characteristics of these salts as well as other solutes of consideration are listed elsewhere (Nguyen M. C., 2006). Observed order of rejection (Na₂SO₄ > NaCl > CaCl₂) is in agreement with the Donnan exclusion, electrostatic repulsion between membrane surface's charge and co-ions (Nguyen M. C., 2006). The highest rejection of Na₂SO₄ is attributed to the highest Donnan exclusion of negative bivalent ion (SO₄²⁻) while the lowest rejection of CaCl₂ is ascribed to the lowest Donnan exclusion of positive bivalent ion (Ca²⁺).

3.2. Arsenic removal performance and mechanism

With relatively high molecular weight, both As(III) and As(V) would be rejected from NF membrane by steric exclusion. Aside from this mechanism, as negatively charged ions, As(V) species would experience Donnan repulsion from negative NF membrane such as NE90.

Fig. 1. Monovalent arsenate removal from DI water, 10 mM NaCl and 10 mM Na₂SO₄ solutions at pH 5.8, T 25°C, P 386 kPa, and flow rate of 0.4 L min⁻¹.

Fig. 2. Divalent arsenate removal from DI water, 10 mM NaCl and 10 mM Na₂SO₄ solutions at pH 8.0, T 25°C, P 386 kPa, and flow rate of 0.4 L min⁻¹.

3.2.1. Monovalent arsenate removal from DI water, NaCl solution, Na₂SO₄ solution

Figure 1 shows the removal of H₂AsO₄⁻ from DI water, 10 mM NaCl and 10 mM Na₂SO₄ solutions, respectively. The empirical rejection results ($R_{\text{SO}_4^{2-}}$ ≈ 97%; $R_{\text{H}_2\text{AsO}_4^-}$ ≈ 88%, Nguyen M. C., 2006) prove the predominance of the Donnan potential over steric effect i.e. SO₄²⁻, the divalent anion is rejected at higher rate compared to H₂AsO₄⁻, the monovalent anion regardless of their diffusivity order. However, the Donnan theory individually cannot account for effects of both NaCl and Na₂SO₄ on H₂AsO₄⁻ removal. Inside such confined and negatively charged pore matrix of the NE90 membrane, effective mobility order of co-ions Cl⁻, H₂AsO₄⁻ and SO₄²⁻ is evaluated as follow: Cl⁻ < H₂AsO₄⁻ < SO₄²⁻ (Nguyen M. C., 2006). Consequently the presence of more mobile co-ion, Cl⁻, enhances retention of
H₂AsO₄⁻ while the less mobile co-ion, SO₄²⁻, worsens H₂AsO₄⁻ separation (Preferential passage phenomenon, postulated by Hodgson, 1970; Vrijenhoek and Waypa, 2000; Childress and Elimelech, 2000).

3.2.2. Bivalent arsenate removal from DI water, NaCl solution, Na₂SO₄ solution
At pH 8.0 As(V) predominantly exists as HAsO₄²⁻ (Brookins, 1988). The individual rejection of HAsO₄²⁻ is lower than that of SO₄²⁻ ($R_{SO_4} = 97\%$; $R_{HAsO_4} \approx 91\%$; Nguyen M. C., 2006). This phenomenon was also observed by Vrijenhoek and Waypa (2000). The presence of Cl⁻, more mobile ion, not only improves the arsenic removal but also reverses the effect of initial HAsO₄²⁻ concentration on the arsenic separation i.e., arsenic separation increases with increasing initial HAsO₄²⁻ concentration (see Figure 2). Vrijenhoek and Waypa (2000) also reported the same phenomenon as investigating effect of Cl⁻ on As(V) removal in the presence of NaHCO₃.

3.2.3. Membrane capacity for arsenic removal from synthetic water
The rejection of As(V) from synthetic water (1 mM NaHCO₃ + 10 mM NaCl) increased from 89% to 96% with increasing As(V) concentration from 20 µg l⁻¹ to 100 µg l⁻¹. At pH 7.0, As(V) exists in both forms H₂AsO₄⁻ and HAsO₄²⁻ which are, in consistence with the solute diffusivity order, less mobile than Cl⁻ and HCO₃⁻ (Nguyen M. C., 2006). Therefore the presence of Cl⁻ and HCO₃⁻ enhances As(V) removal. The As(III) removal decreased from 43% to 40% as the initial As(III) concentration increases from 20 µg l⁻¹ to 100 µg l⁻¹. At pH 7.0, As(III) prevalently occurs as neutral species H₂AsO₃ whose transport through the NE 90 membrane could be described well by Spiegler and Kedem model (Spiegler and Kedem, 1983). As the feed H₂AsO₃ concentration increases both diffusion and convection of the H₂AsO₃ species increase, in consequence the arsenic rejection decreases.

References

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by Ministry of Science and Technology (No. M10300000298-06J0000-29810).