Electrolyte Mechanism Study of Amorphous Ge-Se Materials for Memory Application

Ki-Hyun Nam, Hong-Bay Chung
Kwangwoon Univ.

Abstract: In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about 1 MΩ to several hundreds of Ω. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

Key Words: PMC, ReRAM, chalcogenide, solid-electrolyte

1. 서론

PMC(Programmable Metallization Cell)의 핵심 부분이라 할 수 있는 고체전해질(solid-electrolyte)층은 비정질 chalcogenide 물질의 보다 높은 응용가능성을 제시해 준다. 본 논문에서 언급할 PMC는 비정질 칼코제나이드 물질의 전해질적 특성을 이용해 비도체 물질의 전류를 향부로 내고 차단시킴으로써 0과 1의 신호를 발생 해 낸다. PMC에서 제공의 수확성 현상이 발생하는 부분은 비정질 칼코제나이드 단위에 silver를 광학적으로 정성시키는, 주요 네트워크에서의 에너지와 관련이 있는 silver 이온들 칼코제나이드 박막에 접촉하여 박막 내에 존재하는 결함(defects)과 자리를 점점으로 생각되게하고 있다. 칼코제나이드 박막에 클로 기타 본포되는 silver 이온들은 '초이온전도체(superionic conductors)'의 상태가 되는데, 이 화합물은 특정 온도에 이르면 고체 상태에서도 응용이 유의미한 높은 이온 전도 도를 갖는 특징이 있다. 이들결합이 박막에 도달된 전도성 금속이온은 박막 내부의 결함과 작용하여 고정상의 비정 질 칼코제나이드 박막이 전류를 통과시키게 하는 데에 결정적인 역할을 한다. 전류를 향부로 내고 차단시킴으로써의 현상이 마치 전해질의 특성을 변용하여 '고체전해질(solid electrolyte)'라고도 한다.[1-3]

일반의 스위칭 동작은 저전압, 저전류에서 동작하고, 매우 빠른 속도로 일어나며, 웰런트 안정성과 내구성을 가진과 동시에도 무엇보다도 광정이 단순하고, 휘트다이어 과정과의 변화의 효율성이 가장 큰 장점이라 할 수 있다.

비정질 chalcogenide 물질을 이용한 반도체는 상변화에 모리(PRAM)에서도 결정은 향선 향황(15)에 이질 chalcogenide 박막의 비정질과 결정작과 사이 상변화를 유도하여 on-state와 off-state로 평균시키는 원리의 PRAM이 상용화를 목전에 두고 있다. Chalcogenide 물질은 비활성 미소 분 아니라 태양전지, 박막 트랜지스터 등에 사용 될 새로운 재료로 주목받고 있으며, 특히 PMC에서 사용된 고체형태로 된 전해질 특성을 소소형화된 고성능 2차전지로의 응용도 가능할 것으로 생각된다.

2. 실험

순도 99.999%의 Ge, Se 원소를 사용하여 Ge_{2/3}Se_{1/3} 의 조성비의 비정질 병렬구상을 제작하였다. 소자의 제작은 p-type Si 기판 위에 하부 전극으로 사용한 inert electrode(Ni, 1000 A)를 e-beam evaporator system을 이용하여 5 A/s 종착으로 종착한 후 sputter를 이용하여 절연층으로 사용한 SiO_{2}(2000 A)를 종착하였다. 종착 된 절연층에 페턴을 형성한 후에 Reactive Ion Etching(RIE) system을 이용하여 via hole를 형성하였다. 그 후에 고체 전해질 층으로 사용할 칼코제나이드와 Ag층은 breaking out 없이 종착하였다. chalcogenide의 두께는 1000 A를 종착하였고, Ag는 200 A를 종착하였다. 제작된 sample에 광 확산 과정을 거친 후 다시 상부 전극으로 사용한 Ni를 종착하였다.

![그림 1. 재작된 샘플의 단면도.](attachment:image1)

그림 2는 Ge_{2/3}Se_{1/3}로 제작된 PMC 샘플에 의해 측정된

3. 결과 및 결론

그림 2는 Ge_{2/3}Se_{1/3}로 제작된 PMC 샘플에 의해 측정된
전류-전압 특성 그래프이다. 0 V → 5 V → 0 V → -5 V로 전압을 sweep 했을 때, 변화되는 전류의 값을 나타내었다.

그래프 2. 전압-전류 특성 그래프.

초기 전류가 흐르지 않는 상태에서 전압의 지속적인 증가는 전류의 흐름을 유도하지 못한다. 하지만, 3.6 V에서 전류가 급격히 흐르고, 전압이 증가함에 따라 전류는 계속해서 급격한 흐름을 보인다. 측정장비의 제작으로 인해 ON 상태에서의 전류가 0.1 A로 나타나는 것을 염두에 두어야한다. 전압 5 V가 증가한 후에, 감소하기 시작하면, Ohm's 법칙에 의해 전류도 서서히 감소하게 되고, -3.75 V에서 전류는 흐르지 않게 된다.

그래프 3. 전압-저항 특성 그래프.

그림 3은 그림 2의 실험과 같은 방식으로 전압을 sweep 하였을 때, 변화하는 저항을 측정하여 나타낸 그래프이다. 1 MΩ 이상의 고저항 상태를 보이던 소자에 전압의 상승에 의해 약간의 저항 감소 추세를 보이고, 3.6 V의 전위전압 이후에는 저항이 1 Ω 정도로 낮아지는 것을 볼 수 있다. 이후, 저항이 5 V에서 감소하여 -3.75 V에서 다시 고저항의 상태로 변환할 수 있다.

4. 결론

우리는 이번 연구로 Ge_xSe_{1-x}의 조성비를 갖는 재료를 이용한 PMC의 특성을 확인함으로써 백악형 빔체정 chalcogénide의 전해질 특성을 확인할 수 있었다.

DPSS 레이저 노출은 Ag 이온을 chalcogénide 백막 내부로 점화시키고, Ag 이온들은 비정질 chalcogénide 백막 내부에 우수히 많이 존재하는 결과가 적절하게 된다. 적절한 순바이어스와 액바이어스의 조건은 chalcogénide 백막 내부의 super-ionic 형태로 자연 잔은 Ag 이온을 정점 다리 삼아 상작에서 공급되는 전자와 양극에서 공급되는 Ag 양이온이 결합하여 전도경로를 형성시키게 되고, 전류의 흐름을 제어한다. 이와 같은 특성은 고체형태의 비정질 chalcogénide 물질이 전해질 역할을 충분히 수행해 내는 것을 입증하는 것이다.

감사의 글

이 논문은 2009년도 광운대학교 교내학술연구비 지원에 의해 연구되었음.

참고 문헌