A Design of 40V Power MOSFET for Low Power Electronic Appliances
Ey Goo Kang, Byoung-sup Ann, Tae-jin Nam, Bum-june Kim, Young-hon Lee, Hun Suk Chung
Far East Univ. School of computer information

Abstract: Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The Power MOSFET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 40 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration 1.5×10^{18} \text{ cm}^{-3}, size of 600 \text{ μm}^2 with 4.5 \text{ Ω}, and off-state leakage current below 50 \text{ μA}. We offer the layout of the proposed Power MOSFET to process actually. The offered design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

Key Words: Sense FET, Current sensing

Acknowledgement

본 논문은 지식경제부 2009년 지역전략기술기술 및 전력 IT 사업의 지원을 받아 작성되었음.