Effect of thermal annealing for ZnIn$_2$Se$_4$ thin films obtained by photoluminescence measurement
Kwangjoon Hong
Department of Physics, Chosun University, Kwangju 501-759, Korea

Abstract: Single crystalline ZnIn$_2$Se$_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 400°C with hot wall epitaxy (HWE) system by evaporating ZnIn$_2$Se$_4$ source at 630°C. After the as-grown ZnIn$_2$Se$_4$ single crystalline thin films were annealed in Zn-, Se-, and In-atmospheres, the origin of point defects of ZnIn$_2$Se$_4$ single crystalline thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V$_{Zn}^+$, V$_{Se}^-$, Zn$_{bm}$, and Se$_{bm}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted ZnIn$_2$Se$_4$ single crystalline thin films to an optical p-type. Also, we confirmed that In in ZnIn$_2$Se$_4$/GaAs did not form the native defects because In in ZnIn$_2$Se$_4$ single crystalline thin films existed in the form of stable bonds.

Key Words: ZnIn$_2$Se$_4$, hot wall epitaxy, single crystalline thin film, thermal annealing, photoluminescence

1. 서론
ZnIn$_2$Se$_4$는 $1-\text{III}-\text{VI}_2$족 화합물 반도체로서 섬유에서 에너지 모간력이 1.82 eV 입 적절 변이한 반도체[1-3]이며서 태양전지[4], 광전 메모리 소자[5], 광전도 소자[6], LED (light emitting diode) [7]등에 응용성이 기대되고 있어 얇을의 결정성장과 물성연구가 활발히 진행되고 있다. 본 연구에서는 합성된 ZnIn$_2$Se$_4$ 단정질을 이용하여 HWE 방법으로 반할연성 GaAs (100) 위에 ZnIn$_2$Se$_4$ 단정질 박막을 성지시켰다. ZnIn$_2$Se$_4$ 단정질 박막을 Zn, In 및 Se 증기 분기곡에서 각각 열처리한 후 광 발광 스펙트럼을 측정. 분석하여 이러한 열처리 결과가 결정 성질에 구속된 exciton I_2(D$_{0}X$)가 증성 빛에 구속된 exciton I_1(A$_0X$)에 의한 복사 발광 봉우리 및 SA emission에 의한 광발광 봉우리에 어떤 영향을 미치논지를 연구하였다. 증성성 질 (as-grown)된 ZnIn$_2$Se$_4$ 단정질 박막을 여러 분위기에서 열처리한 결정들에 대한 지배적인 point defects들이 광발광 측정에 의해 연구하여 이러한 결과들과로부터 ZnIn$_2$Se$_4$ 단정질 박막 내에 내재된 결정들의 기원에 대하여 논의할 것이다.

2. 실험 결과 및 고찰
2.1. 열처리된 ZnIn$_2$Se$_4$ 단정질 박막의 광발광 스펙트럼
ZnIn$_2$Se$_4$ 단정질 박막을 450°C의 Zn 분위기에서 1시간 동안 열처리하여, 10 K에서 측정한 광발광 봉우리를 Fig. 1에 보였다. Fig. 1에서는 I_1 봉우리와 SA emission에 의한 것으로 보이는 broad한 광발광 봉우리가 아예 나타나지 않고 있다. Zinc vacancy V$_{Zn}$는 V$_{Zn}^+$, V$_{Zn}^-$, V$_{Zn}^{2-}$가 있고 V$_{Se}^-$는 neutral Zn vacancy라 부른다. 증성 밝계 V$_{Zn}^+$에 구속된 exciton(A$_0$, X)에 의해 발광된 봉우리를 I_1으로 표시하는 것의 하나가 나타나지 않는 것은 Zn 분위기에서 열처리로 Zn의 vacancy V$_{Zn}^+$가 Zn를 채워지고 V$_{Zn}^-$가 없어져, V$_{Se}^-$에 구속된 exciton(A$_0$, X)가 없기에 I_1이 나타나지 않는다고 고찰된다.

ZnIn$_2$Se$_4$ 단정질 박막을 Se 분위기에서 30분 동안 480°C에서 열처리하여 10 K에서 측정한 광발광 스펙트럼을 Fig. 2에 보였다. Fig. 2에서 보는 바와 같이 I_2 봉우리가 나타나지 않았다. Neutral Selenium vacancy V$_{Se}^-$인 donor에 구속된 exciton(D$_{0}$, X)에 의한 광발광 봉우리 l$_{2}$가 없어진 것은 Se 분위기에서 열처리하여 V$_{Se}^-$가 Se원자가 채워지고 V$_{Zn}^-$(나머지 없이 V$_{Se}^-$에 구속된 exciton(D$_{0}$, X)가 없기에 I_2가 나타나지 않는다고 고찰된다.

![Photoluminescence spectrum of ZnIn$_2$Se$_4$ single crystalline thin film at 10 K annealed in Zn vapour.](image-url)
또한 Fig.2에서 \(I_2(D_0, X) \) 광발광 봉우리가 사라지고 \(I_1(A_0, X) \) 광발광 봉우리가 가장 우세한 것으로 보아 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막을 Se 분위기에서 열처리함으로써 \(p \) 형 반도체로 전환됨을 알 수 있었다. SA emission에 의한 broad한 봉우리가 Se 분위기에서 열처리하여도 없어지지 않고, 열처리 이전의 모양을 하고 있다는 것은 SA center는 Se의 vacancy \(V_{\text{Se}} \)로는 무관하다는 증거이다.

그림 2. Se 분위기에서 열처리된 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막의 10 K에서 PL 스펙트럼
Fig. 2. Photoluminescence spectrum of \(\text{ZnIn}_2\text{Se}_4 \) single crystalline thick film at 10 K annealed in Se vapour.

그리고 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막을 870 °C로 In 분위기에서 1시간 동안 열처리한 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막을 10 K에서 측정한 광발광 봉우리를 Fig. 3에 보였다. In 분위기에서 열처리하면 이전의 PL spectra와 거의 같은 모양을 하고 있다. In의 영향을 거의 받지 않고 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막이 제작되었다고 본다.

그림 3. In 분위기에서 열처리된 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막의 10 K에서 PL 스펙트럼
Fig. 3. Photoluminescence spectrum of \(\text{ZnIn}_2\text{Se}_4 \) single crystalline thin film at 10 K annealed in In vapour.

3. 결론
\(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막은 HWE 방식으로 성장시켰다. X-선 화학 측정 결과 \(\text{ZnIn}_2\text{Se}_4 \) 박막은 (112)면으로 성장된 단결정 박막을 알 수 있다. \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막은 특이한 온도 400 °C, 종합된 온도 630 °C으로 성장 시켰을 때 광발광 exciton emission 스펙트럼은 가장 강하게 나타나서, 최적 성장 조건임을 알 수 있었다. \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막을 열처리하여 10 K에서 광발광 봉우리를 측정한 결과 \(I_1 \) 봉우리와 SA emission에 의한 것으로 보이는 broad한 PL 봉우리가 나타나지 않았다. 그러나 결과는 종성 발광 \(V_{\text{Se}} \)에 구속된 exciton emission에 의해 발생한 봉우리 \(I_1 \)이 나타나지 않는다고 주장된다. 또한 Se 분위기에서 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막을 열처리하고, 10 K에서 측정한 광발광 봉우리에는 SA emission에 의한 PL 봉우리가 broad하게 나타나는데 \(I_2(D_0, X) \) 봉우리가 관측되지 않았다. 이것은 종성 donor \(V_{\text{Se}} \)가 Se 분위기에서 열처리로 Se 원자에 의해 제거됨으로써 \(I_2(D_0, X) \) 봉우리가 관측되지 않는다면, 이는 In 분위기에서 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막을 열처리하여 10 K에서 광발광 스펙트럼을 측정한 결과 In 분위기에서 열처리하면 그 이전의 광발광 스펙트럼과 거의 같은 모양을 하고 있다. 이것은 In의 영향을 거의 받지 않고 \(\text{ZnIn}_2\text{Se}_4 \) 단결정 박막이 제작되었다고 본다.

참고 문헌