Characteristics of poly 3C-SiC doubly clamped beam micro resonators
Kyeong-II Ryu and Gwi-Sang Chung
University of Ulsan

Abstract: This paper describes the characteristics of polycrystalline 3C-SiC doubly clamped beam micro resonators. The polycrystalline 3C-SiC doubly clamped beam resonators with 60 ~ 100 \(\mu \text{m} \) lengths, 10 \(\mu \text{m} \) width, and 0.4 \(\mu \text{m} \) thickness were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonant frequency was measured by a laser vibrometer in vacuum at room temperature. For the 60 ~ 100 \(\mu \text{m} \) long cantilevers, the fundamental frequency appeared at 373.4 ~ 908.1 kHz. The resonant frequencies of doubly clamped beam with lengths were higher than simulated results because of tensile stress. Therefore, polycrystalline 3C-SiC doubly clamped beam micro resonators are suitable for RF MEMS devices and bio/chemical sensor applications.

Key Words: Polycrystalline 3C-SiC, doubly clamped beam, resonator