Crosslink Density and Dynamic Mechanical Characteristics of Epoxy-Nanocomposites according to Silane Treatment

Jae-Jun Park, Jong-Min Kim, Dae-Kyoon Lee, Kwan-Hyun Baek
Department of Electrical Electronic Engineering, Joongbu University

Abstract: 에폭시수지에 유기화된 충성실리케이트 나노입자를 충전하여 에폭시-나노콤포지트를 제조하였다. 에폭시-나노콤포지트는 열적, 기계적 특성이 매우 우수한 코모프지트로서 실험처리에 따른 동적 기계적 특성(Dynamic Mechanical Analysis)과 가교밀도와의 관계를 조사하였다. 나노입자의 충전함량은 3wt%로 측정하였고, Silane Coupling Agent는 에폭시나일로서 3-Glycidoxypropyltrimethoxysilane가 사용되었다. 실험처리함량은 0.5, 1, 1.5wt%として 적용하여 제조된 샘플이다. DMA Storage modulus특성으로 glass state(40℃)에서는 원형에폭시의 경우 2054, 실험처리되지 않은 나노콤포지트 3967, 실험처리된 나노콤포지트는 4867MPa를 나타내었다. rubbery state(140℃)에서는 원형에폭시의 경우 1458, 실험처리되지 않은 경우 2506, 실험처리된 나노콤포지트는 2638MPa를 나타내었다. 또한 실험처리함량에 따른 가교밀도변화는 0.5wt%에서는 0.803, 1wt%에서는 0.671, 1.5wt%에서는 0.762[mol/cm³] 이로서 에폭시 원형과 실험처리된 나노콤포지트 그리고 실험처리된 나노콤포지트순으로 glass state와 rubbery state에서의 특성이 크게 형성된 결과를 얻었다. 이는 실험이 과부화와 무기물사이의 결합력을 강화시켜 열적기계적 특성항성을 가졌는 것으로 볼 수 있다. 가교밀도의 실험처리함량의 변화에 있어서 고량의 항향 함유는 에폭시와 나노충성실리케이트 표면처리된 희유량에 오히려 특성의 저하를 가져오는 것으로 볼 수 있다.