복합인터넷쇼핑몰기반 데이터베이스의 설계

윤선희
숭의여자대학
shyoon@sewc.ac.kr

Design of Database for Multiple Internet Shopping Mall

Yoon S. H.
*Dept of Internet Information, Soongweui Woman's College

요 약

복합 인터넷쇼핑몰의 경우, 각 인터넷쇼핑몰에서 관리된 이분의 데이터들이 고객들에게는 글로벌한 복합 인터넷쇼핑몰의 단일 화면으로 투명하게 제공되어야 한다. 본 논문에서는 각 인터넷쇼핑몰의 로컬 데이터의 자치성을 보장하며 고객들에게는 글로벌한 복합 인터넷쇼핑몰의 데이터를 투명하게 액세스하기 위한 통합데이터 중개자 모델을 제안한다. 복합 인터넷쇼핑몰을 지원환경으로 제공되는 통합데이터 환경을 위하여 각각의 단일 인터넷쇼핑몰에 존재하는 기존의 시스템을 유지하면서 이전적인 데이터베이스를 투명하게 액세스할 수 있는 방법으로 합기반 객체지향 기술 및 패일시스템, 관계형 데이터베이스 및 객체지향 데이터베이스를 수용할 수 있는 객체 지향 언어를 사용하는 통합데이터베이스를 설계한다.

키워드 : 전자상거래(Electronic Commerce), 인터넷쇼핑몰(Internet Shopping Mall), 데이터베이스(Integrated database)

I. 서론

복합 인터넷쇼핑몰의 경우, 각 인터넷쇼핑몰에서 관리된 이분의 데이터들이 고객들에게는 복합인터넷쇼핑몰 화면으로 투명하게 제공되어야 한다. 본 논문에서는 각 인터넷쇼핑몰의 로컬 데이터의 자치성을 보장하며 고객들에게는 글로벌한 복합 인터넷쇼핑몰의 데이터를 투명하게 액세스하기 위한 통합데이터 중개자 모델을 제안한다. 복합 인터넷쇼핑몰을 지원환경으로 제공되는 통합데이터 환경을 위하여 각각의 단일 인터넷쇼핑몰에 존재하는 기존의 시스템을 유지하면서 이전적인 데이터베이스를 투명하게 액세스할 수 있는 방법으로 합기반 객체지향 기술 및 패일시스템, 관계형 데이터베이스 및 객체지향 데이터베이스를 수용할 수 있는 객체 지향 언어를 사용하는 통합데이터베이스를 설계한다[3][4].

II. 관련 연구기술

통합 데이터 지원환경으로는 가상기업의 지원환경인 CALS 통합데이터 환경을 지원하기 위한 대표적인 프로젝트로 JCAFS의 GDMS[3], NCALVS의 다른 조명적 분산데이터베이스 시스템이 있다. JCAFS의 GDMS는 분산데이터베이스 시스템의 하향적 접근 방식을 사용하여 중앙 집중적
통계에 의해 관계형 데이터베이스 시스템은 기반으로 동일의 통합데이터베이스 환경을 지원하며 각 기능 요소는 밀접하게 결합된 형태로 서로 작동한다. NCALS로서 추동하는 통합데이터베이스 환경을 지원하는 수평형 분산데이터베이스 시스템은 관계형 데이터베이스 관리 시스템을 기반으로 하여 통합데이터 환경을 제공하기 위해 기반의 중복된 교환 인터페이스 데이터베이스를 사용하여 향상하기 위한 기능을 제공한다.

릴레이션의 비정형 대치 데이터를 위한 연구로는 TGISMIS(5)에서 제안한 OBM(Object, Exchange Model)이 대칭적인 데이터 모델로서 OBM은 DAG 형태의 그래프로 표현되는 데이터로서 데이터 내부에 구조적인 정보를 가지고 있는 모델이다. TGISMIS는 레퍼런스 모델과 기능을 제공한다. 레피를 이용하는 시스템의 공통적인 디자인 형태를 사용하여 기존 시스템을 기반으로 하는 이론 분산데이터베이스 시스템 에 적용하여 하부 데이터 소스에 맞는 일련의 연산을 통하여 각 데이터 소스에서 원하는 결과를 제공한다.

웹 페이지를 통해 데이터베이스를 액세스하기 위해 질의 를 제안하여 고객에게 보여주는 시스템으로, HTML, WebQL, WebQML 등이 있다. 이것은 HTML의 태그 및 링크 정보 를 기반으로 문서의 의미를 구현하고 질의를 통하여 의미 있는 정보를 추출하는 형태로 구성되어 있다.

통합 인터넷소프트웨어의 통합데이터베이스를 지원하기 위해서는 각 인터넷 소프트웨어의 자동화를 가능하게 기존에 사용 중인 시스템을 유지하기 위해 참여한 데이터베이스들의 동적인 시각화 통합에만 의지하지 않으나 각 인터넷 쇼핑장의 장점에 따라 자동적으로 관리할 수 있는 영역에 분산된 서비스를 통합 해야 한다. 각 인터넷 소프트웨어에 존재하는 과일 형태의 데이터 를 보다 안정 관계형 및 격자형 과일 데이터베이스 시스템을 수용할 수 있어야 한다. 또한 사용자의 인터페이스를 처리할 수 있도록 설계되어야 하여 관계형 및 격자형 데이터베이스의 질의를 처리할 수 있는 격자형의 질의 언어가 요구된다.

III. 통합데이터 중개자 모델

3.1 통합데이터 중개자 모델 개요

본 장에서는 각 인터넷소프트웨어의 통합 데이터 환경을 지원하기 위해 글로벌 서비스를 제공하고 각 통합 인터넷소프트웨어의 글로벌 서비스를 제공하며 투명하게 데이터를 접근할 수 있는 통합데이터 중개자 모델을 제안한다.

통합데이터 중개자 모델은 데이터베이스의 프런트 엔드의 기능으로써 데이터베이스 관리자를 호환하는 응용시스템 소프트웨어와 데이터베이스관리 시나리오에서 인터페이스 채용의 역할을 담당한다.

본 논문에서 제안한 통합데이터 중개자 모델의 기능은 고객 관리를 위한 통합데이터 액세스 인터페이스, 고객의 질의 요청에 의해 생성된 공통 질의를 각 인터넷소프트웨어의 로컬 질의 해석할 수 있도록 서브질의로 분해하여 전달하는 글로벌 질의 서브, 분해된 서브질의를 전달하기 위한 데이터베이스/디렉토리 관리 기능들로 구성된다.

3.2 통합데이터 중개자 모델 구조

본 논문에서 제안하는 통합데이터 중개자 모델의 구조는 그림2과 같다.

![그림1 통합데이터 중개자모델 구성도](image)

- 통합데이터 액세스 인터페이스
 웹클라이언트 측의 고객이 웹브라우저를 통해 이미 등록된 고객의 기본 정보 및 구입하고자 하는 정산 아이템의 구매목록, 구매목록, 구매목록, 구매목록, 구매목록 등 정보를 관리한다. 고객의 질의 요청에 따라 세부이하 처리한다.

- 데이터베이스/디렉토리 관리
 고객이 기반 데이터베이스를 입력한 글로벌 질의 정보를 서버에 의해 서브질의로 분해된 후, 각 서브질의 정보를 가지고 있는 각 인터넷소프트웨어의 로컬 질의서버에 전달되며, 각 통합데이터베이스와 각 포털 정보가 대한 매핑 정보의 선택 및 관리하는 역할을 담당한다. 또한 각 인터넷소프트웨어의 고객의 회원정보를 관리한다. 그림2는 데이터베이스/디렉토리 관리기를 처리하기 위한 모듈이다.

module DataDictionary/DirectoryManager (exception DD_DManagerException { string reason: long type */;
typedef sequence<string> seq_String;
typedef sequence<seq_string> seq_seq_String;
struct Location { string gtable_name; string gfield_name; Locationitable_name; string lfield_name; string lfield_name;
); typedef sequence<Mapping>
структур JoinFiend {
 string gtable_name;
 seq_string gfield_name;
};
typedef sequence<MediatorObject> MObjectSeq;
struct MediatorField {
 string name;
 string type;
};

그림 2 데이터서버/디렉토리관리기 모듈
Fig.2. DataDictionary/Directory Manager Module

- 글로벌 질의 서버
글로벌 질의 서버는 통합데이터 에세스 인터페이스에서 생성된 고객의 질의를 객체 질의 언어 형식으로 입력받아 전역질의에서 파생된 결과를 서브질의로 분해한 후, 해당 인터넷 소프트웨어 Laravel 데이터베이스 질의 관리기의 인터페이스를 통해 전달하여 각 인터넷소프트웨어 Laravel 데이터베이스 질의 서버에서 처리된 결과를 다시 받아 화면에 출력시키는 과정을 담당한다. 그림 3은 글로벌 질의 서버 관리기를 처리하기 위한 모듈이다.

module GlobalQueryServer {
 exception GQSException {
 string reason;
 };
typedef sequence<string> seq_string;
struct ServiceMapping {
 string service_name;
 string mapping_name;
};
typedef sequence<Location> seq_location;
struct QueryResultMetaData {
 short type;
 string member_type;
 string member_length;
 string field_name;
};
typedef sequence<QueryResultMetaData> seq_queryResultMetaDatas;
struct RMIData {
 string field_name;
 any value;
};

그림 3 글로벌 질의 서버 관리기 모듈
Fig.3. Global Query Server Manager Module

- 로컬 질의 서버
로컬 질의 서버는 글로벌 질의 서버로부터 전달 받은 글로벌 질의의 서브질의문의 관계형 DBMS나 각지점 DBMS 및 각질 정보를 처리하기 위해 질의를 변환하여 처리하고 질의의 결과를 글로벌 질의 관리기에 전달하는 역할을 담당한다. 그림 4는 로컬 질의 서버 관리기를 처리하기 위한 모듈이다.

module LocalQueryServer {
 exception LocalQueryServerException {
 string reason;
 };
typedef sequence<string> seq_string;
typedef sequence<octet> seq_octet;
struct MediatorTimeStamp {
 long year, month, day;
 long hour, minute, second;
 long name;
};
typedef seq_octet Mediator_Object;
typedef seq_octet Mediator_MemberDefined;
struct QRField {
 long attr;
 any value;
};
typedef sequence<QRField> QRecord;
module RMDServer {
 string field_name;
 string table_name;
 RT type;
 string member_type;
 long member_length;
};
typedef sequence<RMDField> RMetadata;

그림 4 로컬 질의 서버 관리기 모듈
Fig. 4. Local Query Server Manager Module

3.3 연구결과 분석
본 논문에서 제안한 통합데이터 중개자 모델은 JCALS의 GDMS가 중앙 집중형 통계에 의한 수적적 분석 형태로서 새로운 인터넷소프트웨어를 구축해야 한다는 단점을 NCALS의 수평적 분산 데이터베이스를 유지하기 위해 각 지역에서 공유 정보에 대한 교환 인터페이스의 보편화를 제작하기 위해 공유 정보들에 대한 데이터 소스정보를 글로벌 저장소에 등록 및 관리하여 스키마 통합의 필요성 및 중복 관리에서 파생되는 데이터의 일치성능을 보장하기 위한 단점을 제거하고 각 인터넷소프트웨어에서 사용 중인 시스템의 자치성을 보장하는 형태의 통합 관화 서비스에 데이터베이스를 기반으로 하여 기존 시스템을 유지할 수 있도록 설계되었다.

IV. 결론
본 논문에서는 복합 인터넷소프트웨어 데이터 공유를 위해 각 인터넷소프트웨어에서 사용 중인 시스템을 유지하면서 각 인터넷소프트웨어의 위치 투명성이 제공될 수 있는 통합데이터 환
경을 지원하는 중개자 모델을 제안하였다. 본 논문에서 제안된 중개자 모델은 기존의 시스템을 유지하면서 각 인터넷 소평들의 차이성을 인정하며 이질 플랫폼에서 물리적으로 분산된 데이터의 소스들을 논리적으로 통합하여 고객에게 단일 의류로_best 정보가 제공 되어지도록 하여 미래의 복합 인터넷 소평들의 설계 및 구현에 적용될 수 있다.

참고문헌