Effects of GaAs/In$_{0.1}$Ga$_{0.9}$As strained layer on the optical properties of multiple-stacked InAs/GaAs quantum dots

Do Yeob Kim1, Min Su Kim1, Ghun Sik Kim1, Su Min Jeon1, Min Young Cho1, Hyun Young Choi1, Dong Kyun Jeong1, Young Jin Kim1, Jin Soo Kim2, Jeong-Sik Son3, Gi-Seog Eom4, Jae-Young Leem1

1Department of Nano Systems Engineering, Inje University
2Division of Advanced Materials Engineering, Chonbuk National University
3Department of Visual Optics, Kyungwoon University
4Division of General Education, Uiduk University

Multiple-stacked InAs/GaAs quantum dots (QDs) were grown by molecular beam epitaxy (MBE) and their optical properties were investigated by photoluminescence (PL) spectroscopy. To investigate the effects of GaAs(2 nm)/In$_{0.1}$Ga$_{0.9}$As(2 nm) strained layer on the optical properties of multiple-stacked InAs/GaAs QDs, the 10 periods of the GaAs/In$_{0.1}$Ga$_{0.9}$As strained layer was grown on the GaAs buffer layer and InAs QDs layer, respectively. The PL peak positions of the multiple-stacked GaAs/InAs QDs embedded in GaAs/In$_{0.1}$Ga$_{0.9}$As strained layer were blue-shifted with narrowing of the full width at half maximum (FWHM) compared to that of multiple-stacked GaAs/InAs QDs embedded in GaAs barriers. The rapid thermal annealing (RTA) treatments on the InAs QDs embedded in the GaAs/In$_{0.1}$Ga$_{0.9}$As strained layer were performed for 30 s at temperature ranging from 600 °C to 850 °C. The PL spectra of the InAs QDs show blue-shifts of about 50 meV with increasing annealing temperature up to 850 °C. At annealing temperature of 600 °C, the FWHM of the PL peak is reduced to 16 meV and PL intensity is enhanced compared to those of the as-grown sample, which indicates improvement of size uniformity and crystal quality of the QDs.