Highly selective etching of silicon nitride to CVD a-C in dual-frequency capacitively coupled CH$_2$F$_2$/H$_2$ plasmas

김진성1, 권봉수1, 안정호1, 박영록1, 정창룡1, 허욱1, 박지수1, 이내응1, 손종원2

1성균관대학교 신소재공학부, 2주성엔지니어링(주)

For the fabrication of a multi level resist (MLR) based on amorphous carbon (a-C) layer and Si$_3$N$_4$ hard-mask layer etch selectivity of the Si$_3$N$_4$/a-C layer becomes increasingly critical with the feature size reduction. In this work, the highly selective etching process of the Si$_3$N$_4$ layer (≈ 300 nm), using chemical-vapor-deposited (CVD) a-C etch-mask (≈ 300 nm), was investigated by varying the following process parameters in CH$_2$F$_2$/H$_2$/Ar plasma: etch gas flow ratio, high-frequency source power (P_{HF}) and low-frequency source power (P_{LF}) in a dual-frequency superimposed capacitively coupled plasma etcher. It was found that infinitely high etch selectivities of the Si$_3$N$_4$ layers to the CVD a-C on patterned wafers could be obtained for certain process conditions. In particular, the etch gas flow ratio was found to play a critical role in determining the process window for infinite Si$_3$N$_4$/CVD a-C etch selectivity. The etch results of patterned ArF PR/BARC (bottom anti-reflective coating)/SiOx/CVD a-C/Si$_3$N$_4$ MLR structure supported the possibility of using a infinitely high selective etch processes of the Si$_3$N$_4$ layer using CVD a-C etch-mask. Detailed mechanism for very high etch selectivity of Si$_3$N$_4$ layer to the CVD a-C layer will be discussed in detail.